Abstract:
An integrated circuit transistor is formed on a substrate. A trench in the substrate is at least partially filed with a metal material to form a source (or drain) contact buried in the substrate. The substrate further includes a source (or drain) region in the substrate which is in electrical connection with the source (or drain) contact. The substrate further includes a channel region adjacent to the source (or drain) region. A gate dielectric is provided on top of the channel region and a gate electrode is provided on top of the gate dielectric. The substrate may be of the silicon on insulator (SOI) or bulk type. The buried source (or drain) contact makes electrical connection to a side of the source (or drain) region using a junction provided at a same level of the substrate as the source (or drain) and channel regions.
Abstract:
Techniques and structures for shaping the source and drain junction profiles of a finFET are described. A fin may be partially recessed at the source and drain regions of the finFET. The partially recessed fin may be further recessed laterally and vertically, such that the laterally recessed portion extends under at least a portion of the finFET's gate structure. Source and drain regions of the finFET may be formed by growing a buffer layer on the etched surfaces of the fin and/or growing a source and drain layer at the source and drain regions of the fin. The lateral recess can improve channel-length uniformity along the height of the fin.
Abstract:
A semiconductor substrate includes a bulk substrate layer that extends along a first axis to define a width and a second axis perpendicular to the first axis to define a height. A plurality of hetero semiconductor fins includes an epitaxial material formed on a first region of the bulk substrate layer. A plurality of non-hetero semiconductor fins is formed on a second region of the bulk substrate layer different from the first region. The non-hetero semiconductor fins are integrally formed from the bulk substrate layer such that the material of the non-hetero semiconductor fins is different from the epitaxial material.
Abstract:
A semiconductor device that a fin structure, and a gate structure present on a channel region of the fin structure. A composite spacer is present on a sidewall of the gate structure including an upper portion having a first dielectric constant, a lower portion having a second dielectric constant that is less than the first dielectric constant, and an etch barrier layer between sidewalls of the first and second portion of the composite spacer and the gate structure. The etch barrier layer may include an alloy including at least one of silicon, boron and carbon.
Abstract:
A large area electrical contact for use in integrated circuits features a non-planar, sloped bottom profile. The sloped bottom profile provides a larger electrical contact area, thus reducing the contact resistance, while maintaining a small contact footprint. The sloped bottom profile can be formed by recessing an underlying layer, wherein the bottom profile can be crafted to have a V-shape, U-shape, crescent shape, or other profile shape that includes at least a substantially sloped portion in the vertical direction. In one embodiment, the underlying layer is an epitaxial fin of a FinFET. A method of fabricating the low-resistance electrical contact employs a thin etch stop liner for use as a hard mask. The etch stop liner, e.g., HfO2, prevents erosion of an adjacent gate structure during the formation of the contact.
Abstract:
Techniques and structures for controlling etch-back of a finFET fin are described. One or more layers may be deposited over the fin and etched. Etch-back of a planarization layer may be used to determine a self-limited etch height of one or more layers adjacent the fin and a self-limited etch height of the fin. Strain-inducing material may be formed at regions of the etched fin to induce strain in the channel of a finFET.
Abstract:
A method of fabricating features of a vertical transistor include performing a first etch process to form a first portion of a fin in a substrate; depositing a spacer material on sidewalls of the first portion of the fin; performing a second etch process using the spacer material as a pattern to elongate the fin and form a second portion of the fin in the substrate, the second portion having a width that is greater than the first portion; oxidizing a region of the second portion of the fin beneath the spacer material to form an oxidized channel region; and removing the oxidized channel region to form a vacuum channel.
Abstract:
A method of fabricating features of a vertical transistor include performing a first etch process to form a first portion of a fin in a substrate; depositing a spacer material on sidewalls of the first portion of the fin; performing a second etch process using the spacer material as a pattern to elongate the fin and form a second portion of the fin in the substrate, the second portion having a width that is greater than the first portion; oxidizing a region of the second portion of the fin beneath the spacer material to form an oxidized channel region; and removing the oxidized channel region to form a vacuum channel.
Abstract:
A method for making a semiconductor device is provided. Raised source and drain regions are formed with a tensile strain-inducing material, after thermal treatment to form source drain extension regions, to thereby preserve the strain-inducing material in desired substitutional states.
Abstract:
A high performance GAA FET is described in which vertically stacked silicon nanowires carry substantially the same drive current as the fin in a conventional FinFET transistor, but at a lower operating voltage, and with greater reliability. One problem that occurs in existing nanowire GAA FETs is that, when a metal is used to form the wraparound gate, a short circuit can develop between the source and drain regions and the metal gate portion that underlies the channel. The vertically stacked nanowire device described herein, however, avoids such short circuits by forming insulating barriers in contact with the source and drain regions, prior to forming the gate. Through the use of sacrificial films, the fabrication process is almost fully self-aligned, such that only one lithography mask layer is needed, which significantly reduces manufacturing costs.