Abstract:
A fail-safe device may be coupled to a main device for actuating a switch responsive to a failure. The fail-safe device may include a fail-safe circuit, and an isolation trench surrounding the fail-safe circuit and isolating the fail-safe circuit from the main device. The fail-safe device may include an internal power supply connection, an internal reference voltage connection, a self-biased drive block configured to drive the at least one switch, and a receiver configured to receive failure signals from the main device.
Abstract:
A device to read a variable resistor has an analog to digital converter (ADC), a first switch and a second switch. The ADC has a first ADC input, a second ADC input and an ADC output. The first switch selectively couples a first voltage indicative of a voltage across a first resistance to the first ADC input. The second switch selectively couples a second voltage indicative of a voltage across a second resistance to the second ADC input. The ADC outputs a signal indicative of a value of the second resistance.
Abstract:
A driver device is for switching on and off a transistor for supplying a load by driving a control electrode of the transistor. The driver device includes a first terminal connected to the control electrode of the transistor, a second terminal connected between the transistor and the load, and a current-discharge path coupled to the first terminal. The current-discharge path includes a diode and is activated when the transistor is switched off. The diode becomes non-conductive to interrupt the current-discharge path when the voltage on the second terminal reaches a threshold value.
Abstract:
An analog-to-digital conversion loop adapted to generate a digital output signal corresponding to a low-pass filtered replica of an analog input signal, including an analog adder configured to receive the input analog signal and an analog feedback signal, adapted to generate an analog error signal corresponding to the difference between the analog input signal and the analog feedback signal; an analog-to-digital converter having a nonlinear input-output conversion characteristic defining a larger quantization step the more the input to be converted differs from a null value, configured to receive the analog error signal and to generate a corresponding digital error signal a digital integrator configured to receive the digital error signal, configured to generate the digital output signal corresponding to the time integration of the digital error signal; a digital-to-analog converter, configured to receive the digital output signal and to generate the analog feedback signal as analog replica of the digital output signal.
Abstract:
An analog-to-digital conversion loop adapted to generate a digital output signal corresponding to a low-pass filtered replica of an analog input signal, including an analog adder configured to receive the input analog signal and an analog feedback signal, adapted to generate an analog error signal corresponding to the difference between the analog input signal and the analog feedback signal; an analog-to-digital converter having a nonlinear input-output conversion characteristic defining a larger quantization step the more the input to be converted differs from a null value, configured to receive the analog error signal and to generate a corresponding digital error signal a digital integrator configured to receive the digital error signal, configured to generate the digital output signal corresponding to the time integration of the digital error signal; a digital-to-analog converter, configured to receive the digital output signal and to generate the analog feedback signal as analog replica of the digital output signal.
Abstract:
In embodiments, a capacitance is coupled to a source of electrical charge via a drain to source current flow path through a field-effect transistor. The capacitance is pre-charged by making the field-effect transistor selectively conductive in response to the gate-source voltage of the field-effect transistor exceeding a threshold. The difference between the gate-source voltage of the field-effect transistor and the threshold provides an overdrive value of the field-effect transistor. The gate of the field-effect transistor is driven with a variable gate-source voltage having as a target maintaining a constant overdrive value. Electrical charge is controllably transferred from the source to the capacitance via the drain to source current flow path through the field-effect transistor avoiding undesirably high inrush currents.
Abstract:
Provided is a circuit including a switching transistor having a control terminal configured to receive a control signal and having a current flow path therethrough. The switching transistor becomes conductive in response to the control signal having a first value. The current flow path through the switching transistor provides a current flow line between two nodes. In a non-conductive state, a voltage drop stress is across the switching transistor. The circuit comprises a sense transistor that is coupled to and a scaled replica of the switching transistor. The sense transistor has a sense current therethrough. The sense current is indicative of the current of the switching transistor. The circuit includes coupling circuitry configured to apply the voltage drop stress across the sense transistor in response to the switching transistor being non-conductive. In the non-conductive state, the voltage drop stress is replicated across both the switching transistor and the sense transistor.
Abstract:
A method of operating a control device includes performing an open load test or a current leakage test. The open load test includes activating a first current and then a second current and sensing with the first current and the second current activated, respectively, a first voltage drop and a second voltage drop between charge distribution pins and charge sensing pins of the control device. Respective differences are calculated between the first voltage drop and the second voltage drop sensed with the first current and the second current activated, respectively. These differences are compared with respective thresholds and an open circuit condition is declared as a result of the differences calculated reaching these thresholds.
Abstract:
In embodiments, a capacitance is coupled to a source of electrical charge via a drain to source current flow path through a field-effect transistor. The capacitance is pre-charged by making the field-effect transistor selectively conductive in response to the gate-source voltage of the field-effect transistor exceeding a threshold. The difference between the gate-source voltage of the field-effect transistor and the threshold provides an overdrive value of the field-effect transistor. The gate of the field-effect transistor is driven with a variable gate-source voltage having as a target maintaining a constant overdrive value. Electrical charge is controllably transferred from the source to the capacitance via the drain to source current flow path through the field-effect transistor avoiding undesirably high inrush currents.
Abstract:
In an embodiment, an electronic circuit includes: a controller configured to produce a pulse-width-modulated (PWM) signal to control a first current of an electrical load; a redundant current measurement circuit configured to measure the first current and provide first and second current measurement signal; a monitor circuit coupled to the redundant current measurement circuit, the monitor circuit configured to assert a current monitor signal in response to the first and second current measurement signals being found to be matching with each other, wherein the monitor circuit is configured to: detect an absence of the asserted current monitor signal prior to expiry of a threshold time interval, and in response to detecting the absence of the asserted current monitor signal, force the controller to produce, prior to expiry of the threshold time interval, a first PWM signal pulse having a controlled duty-cycle.