Abstract:
A semiconductor light emitting device includes: a light emitting structure having a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer stacked therein along a stacking direction, a transparent electrode layer on the second conductivity-type semiconductor layer and divided into first and second regions, the transparent electrode layer having a plurality of first through-holes disposed in the first region, an insulating reflective layer covering the transparent electrode layer and having a plurality of second through-holes in a region overlapping the second region along the stacking direction, and a reflective electrode layer on the region of the insulating reflective layer and connected to the transparent electrode layer through the plurality of second through-holes.
Abstract:
A light-emitting device includes a light-emitting chip having a first surface and a second surface. A first light reflection pattern is formed on the second surface. A plurality of terminals are disposed to be connected to the light-emitting chip by passing through the first light reflection pattern. A second light reflection pattern is formed on side surfaces of the light-emitting chip and the first light reflection pattern. A light-transmitting pattern is formed between the light-emitting chip and the second light reflection pattern and extends between the first light reflection pattern and the second light reflection pattern. A wavelength conversion layer is formed on the first surface of the light-emitting chip.
Abstract:
A method of forming a metal bonding layer includes forming first and second bonding metal layers on one surfaces of first and second bonding objects, respectively. The second bonding object is disposed on the first bonding object such that the first bonding metal layer and the second bonding metal layer face each other. A eutectic metal bonding layer is formed through a reaction between the first and second bonding metal layers. At least one of the first bonding metal layer and the second bonding metal layer includes an oxidation prevention layer formed on an upper surface thereof. The oxidation prevention layer is formed of a metal having an oxidation reactivity lower than an oxidation reactivity of the bonding metal layer on the upper surface which the oxidation prevention layer is disposed.
Abstract:
A semiconductor light emitting device includes a light emitting structure and first and second electrodes. The light emitting structure includes first and second conductivity type semiconductor layers and an active layer interposed therebetween. The first and second electrodes are electrically connected to the first and second conductivity type semiconductor layers. The second electrode includes a current blocking layer, a reflective part disposed on the current blocking layer, a transparent electrode layer disposed on the second conductivity type semiconductor layer, a pad electrode part disposed within a region of the current blocking layer, and at least one finger electrode part disposed at least in part on the transparent electrode layer. The transparent electrode layer can be spaced apart from the reflective part, and have an opening surrounding the reflective part. In some examples, the transparent electrode layer can further be spaced apart from the current blocking layer.
Abstract:
An air conditioner includes a body installed at an outdoor space, and an air discharge tube to guide cold air discharged from the body to an indoor space. An evaporator and a condenser are installed in the body. The evaporator is disposed at a higher level than the condenser. Accordingly, it possible to transfer condensed water generated from the evaporator to the condenser by gravity.
Abstract:
A method for manufacturing a semiconductor light emitting device, includes: forming a light emitting structure having a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer on a growth substrate. A trench is formed in a portion to divide the light emitting structure into individual light emitting structures. The trench has a depth such that the growth substrate is not exposed. A support substrate is provided on the light emitting structure. The growth substrate is separated from the light emitting structure. The light emitting structure is cut into individual semiconductor light emitting devices.
Abstract:
A semiconductor device including a substrate; a lower structure including a sealing layer on the substrate and a support layer on the sealing layer, the sealing layer and the support layer both including a semiconductor material; a mold structure on the lower structure and having an interlayer insulating film and a conductive film alternately stacked therein; a channel hole penetrating the mold structure; a channel structure extending along sidewalls of the channel hole; an isolation trench penetrating the mold structure and extending into the lower structure; and a poly liner extending along sidewalls of the isolation trench, the poly liner being connected to the lower structure and including the semiconductor material.
Abstract:
A semiconductor memory device includes a third insulating pattern and a first insulating pattern on a substrate, the third insulating pattern and the first insulating pattern being spaced apart from each other in a first direction that is perpendicular to the substrate such that a bottom surface of the third insulating pattern and a top surface of the first insulating pattern face each other, a gate electrode between the bottom surface of the third insulating pattern and the top surface of the first insulating pattern, and including a first side extending between the bottom surface of the third insulating pattern and the top surface of the first insulating pattern, and a second insulating pattern that protrudes from the first side of the gate electrode by a second width in a second direction, the second direction being different from the first direction.
Abstract:
A nonvolatile memory device and method of fabricating same, the nonvolatile memory device including a substrate; a first semiconductor layer on the substrate; an etching stop film including a metal oxide on the first semiconductor layer; a mold structure including second semiconductor layers and insulating layers alternately stacked on the etching stop film; a channel hole penetrating through at least one of the mold structure, the etching stop film, the second semiconductor layer and the substrate; and a channel structure extending along a side wall of the channel hole, including an anti-oxidant film, a first blocking insulation film, a second blocking insulation film, a charge storage film, a tunnel insulating film and a channel semiconductor sequentially formed along the side wall of the channel hole. The first semiconductor layer contacts the first blocking insulation film, the second blocking insulation film, the charge storage film, and the tunnel insulating film.
Abstract:
A semiconductor device includes a stack structure on a substrate, the stack structure including alternating gate electrodes and insulating layers stacked along a first direction, a vertical opening through the stack structure along the first direction, the vertical opening including a channel structure having a semiconductor layer on an inner sidewall of the vertical opening, and a variable resistive material on the semiconductor layer, a vacancy concentration in the variable resistive material varies along its width to have a higher concentration closer to a center of the channel structure than to the semiconductor layer, and an impurity region on the substrate, the semiconductor layer contacting the impurity region at a bottom of the channel structure.