Abstract:
A packaged semiconductor system, including: at least one electronic device on a device mounting surface of a substrate having terminals for attaching bond wires; at least one discrete component adjacent to the at least one electronic device, a second electrode of the at least one discrete component parallel to and spaced from a first electrode by a component body; the first electrode a metal foil having a protrusion extending laterally from the body and having a surface facing towards the second electrode; bonding wires interconnecting respective terminals of the at least one electronic device, the first electrode and the second electrode, and bonded to the surface of the second electrode and to the protrusion that extend away from the respective surfaces in a same direction; and packaging compound covering portions of the at least one electronic device, the at least one discrete component, and the bonding wires.
Abstract:
A packaged semiconductor system, including: at least one electronic device on a device mounting surface of a substrate having terminals for attaching bond wires; at least one discrete component adjacent to the at least one electronic device, a second electrode of the at least one discrete component parallel to and spaced from a first electrode by a component body; the first electrode a metal foil having a protrusion extending laterally from the body and having a surface facing towards the second electrode; bonding wires interconnecting respective terminals of the at least one electronic device, the first electrode and the second electrode, and bonded to the surface of the second electrode and to the protrusion that extend away from the respective surfaces in a same direction; and packaging compound covering portions of the at least one electronic device, the at least one discrete component, and the bonding wires.
Abstract:
An assembly including an electrical connection substrate formed of material having a Young's modulus of less than about 10 MPa, an acoustic device die having opposite end portions mounted on and electrically connected to the electrical connection substrate and a mold compound layer encapsulating the acoustic device die and interfacing with the substrate.
Abstract:
The assembly of a chip (101) attached to a substrate (103) with wires (201) spanning from the chip to the substrate is loaded in a heated cavity (402) of a mold; the wire surfaces are coated with an adsorbed layer of molecules of a heterocyclic compound (302); a pressure chamber (404) of the mold is loaded with a solid pellet (410) of a packaging material including a polymerizable resin, the chamber being connected to the cavity; the vapor of resin molecules is allowed to spread from the chamber to the assembly inside the cavity during the time interval needed to heat the solid pellet for rendering it semi-liquid and to pressurize it through runners (403) before filling the mold cavity, whereby the resin molecules arriving in the cavity are cross-linked by the adsorbed heterocyclic compound molecules into an electrically insulating at least one monolayer of polymeric structures on the wire surfaces.
Abstract:
The invention is directed to a method for inhibiting or preventing delamination at the interface of the die attach/mold compound and the die pad of a semiconductor device and a semiconductor device formed by such method. The method includes providing a leadframe having a top surface; coating the top surface of the leadframe with first and second silane coating; heating the silane coatings to form a porous layer having a porosity of at least 10%; applying a die to the porous layer; securing the die to the porous layer by a die attaching compound; and after the curing of die attach material and wire bonding, a mold compound is applied through molding.
Abstract:
The assembly of a chip (101) attached to a substrate (103) with wires (201) spanning from the chip to the substrate is loaded in a heated cavity (402) of a mold; the wire surfaces are coated with an adsorbed layer of molecules of a heterocyclic compound (302); a pressure chamber (404) of the mold is loaded with a solid pellet (410) of a packaging material including a polymerizable resin, the chamber being connected to the cavity; the vapor of resin molecules is allowed to spread from the chamber to the assembly inside the cavity during the time interval needed to heat the solid pellet for rendering it semi-liquid and to pressurize it through runners (403) before filling the mold cavity, whereby the resin molecules arriving in the cavity are cross-linked by the adsorbed heterocyclic compound molecules into an electrically insulating at least one monolayer of polymeric structures on the wire surfaces.
Abstract:
A packaged semiconductor device (100) comprising a leadframe having a pad (101) with an assembled semiconductor chip (110), a plurality of straps (102) connecting the pad to side edges of the device package, leads (103), and a package (150) of plastic compound adhering to the leadframe; at least one surface (102a) of the straps covered with a layer (120) of a compound both non-adhesive to polymeric compounds and hydrophobic; the compound (220) selected from a group including fluorinated thiol compounds, fluorinated amine compounds, fluorinated aminesilanes, organosilanes, and their derivatives; or the compound (330) selected from a group including open-pore microcellular metal foams and polymer foams. Further, the package may include an array of holes through the plastic compound, extending from the package surface to the strap surface.
Abstract:
Methods of fabricating integrated circuits are disclosed herein. A die having a side is provided. A conductive stud extends from the side in a direction that is substantially normal to the side. A first dielectric layer is affixed to the side of the die. The first dielectric layer has a first side and a second side. The first side of the first dielectric layer is affixed to the side of the die. The conductive stud pierces the first side of the first dielectric layer. A first via is formed through the first dielectric layer between the conductive stud and the second side. The first via is electrically connected to the conductive stud.
Abstract:
A chip is attached to a substrate with wires spanning from the chip to the substrate is loaded in a heated cavity of a mold. The wire surfaces are coated with an adsorbed layer of molecules of a heterocyclic compound. A pressure chamber of the mold is loaded with a solid pellet of a packaging material including a polymerizable resin. The chamber is connected to the cavity. The vapor of resin molecules is allowed to spread from the chamber to the assembly inside the cavity during the time interval needed to heat the solid pellet for rendering it semi-liquid and to pressurize it through runners before filling the mold cavity, wherein the resin molecules arriving in the cavity are cross-linked by the adsorbed heterocyclic compound molecules into an electrically insulating at least one monolayer of polymeric structures on the wire surfaces.
Abstract:
The packaging of an electric contact including a semiconductor chip (102) having terminals (101) of a first metal and connecting wires (111, 112) of a second metal, the wires forming at the terminals regions (113) of intermetallic compounds of the first and second metals; a solution of an aromatic azole compound dissolved in ethanol is dispensed onto the surfaces of the wire spans and the intermetallic regions, thereby forming on the surfaces layers (301) of adsorbed molecules of the aromatic azole compound; chip and wire bonds are encapsulated in a polymerizable resin (401), thereby exploiting the adsorbed aromatic azole molecules as catalysts to cross-link resin molecules into polymerized structures (402) having a mesh density capable of inhibiting the diffusion of impurity ions (410) and thus protecting the surface of the intermetallic regions.