Abstract:
Methods and devices for the interfacing of microchips to various types of modules are disclosed. The technology disclosed can be used as sample preparation and analysis systems for various applications, such as DNA sequencing and genotyping, proteomics, pathogen detection, diagnostics and biodefense. Also disclosed in the present disclosure is a flow through, traveling-wave, bead-beating device which comprises a rotating pole piece, a flow through tube, and a magnetic piece. Rotation of the rotating pole piece may create a magnetic wave down the flow through tube, thereby producing sufficient acceleration of beads through the tube to disrupt or lyse target analytes flowing through the tube.
Abstract:
The invention provides a system that can process a raw biological sample, perform a biochemical reaction and provide an analysis readout. For example, the system can extract DNA from a swab, amplify STR loci from the DNA, and analyze the amplified loci and STR markers in the sample. The system integrates these functions by using microfluidic components to connect what can be macrofluidic functions. In one embodiment the system includes a sample purification module, a reaction module, a post-reaction clean-up module, a capillary electrophoresis module and a computer. In certain embodiments, the system includes a disposable cartridge for performing analyte capture. The cartridge can comprise a fluidic manifold having macrofluidic chambers mated with microfluidic chips that route the liquids between chambers. The system fits within an enclosure of no more than 10 ft3. and can be a closed, portable, and/or a battery operated system. The system can be used to go from raw sample to analysis in less than 4 hours.
Abstract:
The disclosure provides methods and devices for separating and detecting nucleic acid fragments labeled with a plurality of spectrally resolvable dyes using a single light source or multiple light sources. Use of a greater number of light sources increases the number of spectrally resolvable dyes that can be interrogated. Labeling fragments with a greater number of spectrally resolvable dyes permits more overlapping of fragments with differentiation of the fragments, and thus separation can be conducted on a smaller range of fragment sizes/lengths. To improve the detection sensitivity of a detection system employing multiple light sources, light emitted by the light sources can be spatially separated from one another and/or the intensity of each of the light sources can be modulated. Each of the one or more light sources can be, e.g., a laser or a light-emitting diode. The methods and devices of the disclosure are useful for performing genetic analysis, e.g., analysis of a plurality of STR markers utilized in a forensic database (e.g., CODIS) to identify humans.
Abstract:
The present invention discloses the integration of programmable microfluidic circuits to achieve practical applications to process biochemical and chemical reactions and to integrate these reactions. In some embodiments workflows for biochemical reactions or chemical workflows are combined. Microvalves such as programmable microfluidic circuit with Y valves and flow through valves are disclosed. In some embodiments microvalves of the present invention are used for mixing fluids, which may be part of an integrated process. These processes include mixing samples and moving reactions to an edge or reservoir for modular microfluidics, use of capture regions, and injection into analytical devices on separate devices. In some embodiments star and nested star designs, or bead capture by change of cross sectional area of a channel in a microvalve are used. Movement of samples between temperature zones are further disclosed using fixed temperature and movement of the samples by micropumps.
Abstract:
Methods and devices for the interfacing of microchips to various types of modules are disclosed. The technology disclosed can be used as sample preparation and analysis systems for various applications, such as DNA sequencing and genotyping, proteomics, pathogen detection, diagnostics and biodefense.
Abstract:
Methods and devices for the interfacing of microchips to various types of modules are disclosed. The technology disclosed can be used as sample preparation and analysis systems for various applications, such as DNA sequencing and genotyping, proteomics, pathogen detection, diagnostics and biodefense.
Abstract:
The present technology relates to pins that are used for moving liquid samples from source wells into target wells. A releasable fastening mechanism simplifies calibration of positions (e.g., vertical positions) of the pins relative to a frame releasably holding the pins.
Abstract:
The invention provides a system that can process a raw biological sample, perform a biochemical reaction and provide an analysis readout. For example, the system can extract DNA from a swab, amplify STR loci from the DNA, and analyze the amplified loci and STR markers in the sample. The system integrates these functions by using microfluidic components to connect what can be macrofluidic functions. In one embodiment the system includes a sample purification module, a reaction module, a post-reaction clean-up module, a capillary electrophoresis module and a computer. In certain embodiments, the system includes a disposable cartridge for performing analyte capture. The cartridge can comprise a fluidic manifold having macrofluidic chambers mated with microfluidic chips that route the liquids between chambers. The system fits within an enclosure of no more than 10 ft3. and can be a closed, portable, and/or a battery operated system. The system can be used to go from raw sample to analysis in less than 4 hours.
Abstract:
The present invention discloses the integration of programmable microfluidic circuits to achieve practical applications to process biochemical and chemical reactions and to integrate these reactions. In some embodiments workflows for biochemical reactions or chemical workflows are combined. Microvalves such as programmable microfluidic circuit with Y valves and flow through valves are disclosed. In some embodiments microvalves of the present invention are used for mixing fluids, which may be part of an integrated process. These processes include mixing samples and moving reactions to an edge or reservoir for modular microfluidics, use of capture regions, and injection into analytical devices on separate devices. In some embodiments star and nested star designs, or bead capture by change of cross sectional area of a channel in a microvalve are used. Movement of samples between temperature zones are further disclosed using fixed temperature and movement of the samples by micropumps.
Abstract:
This invention provides composite plastic articles and methods of making them. The articles can be fluidic or microfluidic devices having fluidic conduits and, optionally, pneumatic conduits that regulate flow in the fluidic conduits. The articles comprise a first substrate coated with a layer of a material that comprises, or onto which have been introduced, reactive groups. For example, the substrate can be a plastic coated with an oxide or a siloxane onto which hydroxyl groups have been introduced. These articles are covalently bonded with other articles comprising reactive groups on their surfaces, for example, polysiloxanes treated to have silanol groups. Certain articles have specified locations on their surfaces that are not bonded to the other piece. For example, the coating can be removed from these locations before bonding. Such locations can be useful as functional elements of various devices, such as valve seats in valves of microfluidic devices.