Abstract:
The invention relates to the use of formulations containing selected fluorinated components for reducing friction between conveyor systems and the containers transported thereon.
Abstract:
A process for lubricating a container, such as a beverage container, or a conveyor for containers, by applying to the container or conveyor, a thin continuous, substantially non-dripping layer of a liquid lubricant. The process provides many advantages compared to the use of a conventional dilute aqueous lubricant.
Abstract:
An engine lubricant formulated as a complete crankcase motor oil or additive concentrate composed of a combination of chemical constituents including a base oil selected from a synthetic oil, a mineral oil or semi-synthetic base oil (hydrogenated oil) or combination thereof, an oil soluble molybdenum additive, a dispersant inhibitor containing zinc dithiophosphate, and viscosity index improvers and one or more seal swelling agents to lubricate the engine and recondition the seals of new and/or high mileage engines. Addition of a polyalphaolefin and/or one or more esters such as a diester or polyolester may also be utilized therein. The lubricant may be formulated as a complete engine oil crankcase lubricant, or concentrated into an additive for addition to conventional mineral oil based engine oil, synthetic engine oils, or blends thereof in an effective amount of up to 30 percent volume percent, typically from 20 to 25 percent by volume.
Abstract:
A method of improving performance of refrigerant systems such as refrigerators and air conditioners that utilize a refrigerant working fluid. The working fluid consists essentially of a heat transfer fluid and a lubricant that is miscible and is otherwise compatible with the heat transfer fluid at all operating temperatures of the refrigerant system. The method is directed particularly to chlorine-free fluoro-group organic fluids and more particularly to hydrofluorocarbon heat transfer fluids. The preferred lubricants comprise polyol ester basestocks and compounded polyol esters that are highly miscible with such hydrofluorocarbon heat transfer fluids.
Abstract:
This invention describes a refrigerating oil composition for natural substance-based refrigerants which comprises (A) a synthetic oil component comprising a polyether compound having a pour point of null10null C. or lower and (B) a mineral oil component comprising sulfur components, wherein the ratio of amounts by weight of component (A) to component (B) is in the range of 25:75 to 99:1 and the amount of the sulfur components derived from component (B) in the composition is in the range of 5 to 1,000 ppm. The refrigerating oil composition has excellent miscibility with natural substance-based refrigerants and, in particular, with ammonia-based refrigerants, exhibits an improved lubricity and used for industrial refrigerators using natural substance-based refrigerants such as ammonia, propane, butane and carbon dioxide.
Abstract:
Lubricant compositions are used on conveying systems in the beverage industry during the filling of containers with dairy products or other beverages. An antimicrobial conveyor lubricant composition according to the invention includes alkyl alkoxylated phosphate ester, antimicrobial agent comprising at least one of quaternary ammonium antimicrobial agent and protonated amine antimicrobial agent, extreme pressure additive, water, and neutralizing agent in an amount sufficient to provide a use solution having a pH in the range of about 4 to about 9. The composition can include an extreme pressure additive and/or a corrosion inhibitor. A method for using an antimicrobial lubricant composition is provided.
Abstract:
The present invention describes a refrigerating oil composition for a carbon dioxide refrigerant comprising a base oil composition which comprises (A) a polyoxyalkylene glycol having a kinematic viscosity of 3 to 50 mm2/s at 100null C. and at least one component selected from (B) a carbonate-based carbonyl derivative having a kinematic viscosity of 3 to 50 mm2/s at 100null C. and (C) a polyol ester having a kinematic viscosity of 3 to 50 mm2/s at 100null C., wherein an amount of (B) and/or (C) is 0.1 to 40% by weight of the total base oil composition. The composition exhibits sufficient antiwear, excellent lubricity and miscibility with carbon dioxide refrigerants and can be used for a long time with stability in the refrigerating cycle using a refrigerant comprising carbon dioxide in the supercritical condition of a high temperature and a high pressure as the main component.
Abstract:
A lubricant blend for use on a wire exposed to an HFC refrigerant. The lubricant blend includes an organic phase and an aqueous phase. The organic phase includes a lubricant which has a defined solubility in the HFC refrigerant and a lubricity suitable for application to the wire. The organic phase also includes a solvent in which the lubricant is soluble and, optionally, a hydrophobic surfactant. The aqueous phase includes a surfactant which forms an emulsion between the organic phase and the aqueous phase, which has a defined solubility in a non-CFC containing refrigerant. A magnetic wire lubricant, method of making the lubricant blend, and compressor using the lubricant blend are also described.
Abstract:
This invention relates to a lubricating composition comprising a major amount of an oil of lubricating viscosity and (A) a di or trihydrocarbyl phosphite, (B) at least one reaction product of a di or trihydrocarbyl phosphite and sulfur or a source of sulfur; at least one di or trihydrocarbyl monothiophosphate; or salt thereof, and (C) a salt of a hydrocarbyl phosphoric acid ester. In one embodiment, the lubricant composition contains less than 0.1% phosphorus or less than about 0.75% borated dispersant. This combination of phosphorus compounds provides antiwear and thermal stability to lubricants, even at low phosphorus levels. The lubricating compositions containing the combination of the phosphorus compounds has low corrosivity to copper and low odor as well.
Abstract:
A solid lubricant and composition useful for lubricating the flanges of locomotive wheels, railcar wheels, rail track and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant having from about twenty-five percent to about seventy percent by volume of a polymeric carrier, about five to seventy-five percent by volume of organic and inorganic extreme pressure additives, about zero to twenty percent by volume synthetic extreme pressure anti-wear liquid oil, and about zero to one percent by volume optical brightener.