Abstract:
A tissue culture system for production of infectious hepatitis C virus is described. In particular, the invention provides recombinant monocistronic and bicistronic genomic constructs for production of virus, including constructs for production of wild-type HCV type 2a strain JFH1 and constructs for production of chimeric viruses comprising HCV proteins from strain JFH1 and a second HCV isolate. Constructs of the invention also include a reporter gene to facilitate measurement of RNA replication and viral infectivity in cultures. The cell culture system may also include various factors that improve viral replication or infectivity. In addition, a neutralization assay using HCV grown in cell culture is described.
Abstract:
A novel targeting peptide from the C-terminal of endothelin and/or a novel fusogenic peptide from hemagglutinin are optionally conjugated to the carboxy group of 1,2-dioleoyl-sn-glycero-3-succinate and incorporated into liposomes for therapeutic treatment. The novel targeting peptide directs liposomes to lung cells, and, therefore, is useful for delivering liposomes encapsulating cholinesterase genes, particularly, the human serum butyryl cholinesterase (Hu BChE) gene, as a treatment against nerve agents. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader quickly to ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the appended issued claims. 37 CFR §1.72(b).
Abstract:
The present invention provides an improved method for the in vivo production of soluble assembled virus-like particles (“VLPs”) in bacterial cells of Pseudomonad origin. The Pseudomonad cells support assembly of VLPs from icosahedral viral capsid proteins (“CPs”) in vivo, and allow the inclusion of larger recombinant peptides as monomers or concatamers in the VLP. The invention specifically provides an improved method for the in vivo production of soluble assembled Cowpea Chlorotic Mottle Virus (“CCMV”) VLPs by introducing modifications into the CCMV CP that result in high yield production of soluble CP fusions in a Pseudomonas fluorescens bacterial system. These soluble VLPs can subsequently be purified and used as vaccines.
Abstract:
The present invention provides isolated or synthesized peptides of about 7 to about 50 amino acids identified in the genome of pathogens in invertebrates in aquaculture for prevention and treatment of outbreaks of these pathogens in aquaculture and methods of preventing and treating pathogenic outbreaks using the identified peptides.
Abstract:
The present invention relates to methods and compositions for lipid matrix-assisted chemical ligation and synthesis of membrane polypeptides that are incorporated in a lipid matrix. The invention is exemplified in production of a prefolded membrane polypeptide embedded within a lipid matrix via stepwise chemoselective chemical ligation of unprotected peptide segments, where at least one peptide segment is embedded in a lipid matrix. Any chemoselective reaction chemistry amenable for ligation of unprotected peptide segments can be employed. Suitable lipid matrices include liposomes, micelles, cell membrane patches and optically isotropic cubic lipidic phase matrices. Prefolded synthetic and semi-synthetic membrane polypeptides synthesized according to the methods and compositions of the invention also permit site-specific incorporation of one or more detectable moieties, such as a chromophore, which can be conveniently introduced during synthesis. The methods and compositions of the invention have multiple uses. For example, they can be used to assay ligand binding to membrane polypeptides and domains comprising a receptor, and thus are extremely useful for structure/function studies, drug screening/selection/design, and diagnostics and the like, including high-throughput applications. The methods and compositions of the invention are particularly suited for FRET analyses of previously inaccessible membrane polypeptides.
Abstract:
The present invention provides a fusion protein construct (gp41HA) consisting of the ectodomain of the HIV-1IIIB envelope glycoprotein gp41 fused to a fragment of the influenza virus HA2 hemagglutinin protein. Immunization in-vivo via an intraperitoneal prime followed by intranasal or intragastric boosts with gp41HA induces high concentrations of serum IgG antibodies and fecal IgA antibodies that reacted with gp41 in HIV-1IIIB viral lysate and are cross-reactive with gp41 in HIV-1MN lysate. Followup analyses by indirect immunofluorescence showed that both serum IgG and fecal IgA recognized human peripheral blood mononuclear cells infected with either syncytium-inducing (SI) or non-syncytium-inducing (NSI) North American HIV-1 field isolates, but not uninfected cells.
Abstract:
Peptides of influenza virus hemagglutinin protein and Plasmodium falciparum malaria antigen, antibodies specific for the peptides, influenza vaccines, malaria vaccines and methods of stimulating the immune response of a subject to produce antibodies to influenza virus or malaria are disclosed. Also disclosed are methods for formulating vaccines for influenza virus.
Abstract:
The invention relates to the use of Alum for the preparation of a drug for enhancing an antigen-specific type 1 immune response against an antigen in the presence of a type 1 inducing adjuvant.
Abstract:
Weak-base amphiphilic delivery peptide compositions are described for use in delivering large polar substances (cargo) into the cytosol of animal cells via an indirect endocytosis-mediated delivery process. The delivery peptides, which are predominantly non-ionic at neutral pH, bind but do not permeabilize cell membranes. After endocytosis of both delivery peptides and cargo, acidification of the endosome converts the delivery peptides to their polycationic form, whereupon they permeabilize the endosomal membrane and allow co-endocytosed cargo to pass from the endosome to the cytosol of the cell.
Abstract:
A rational method for obtaining a novel molecule capable of a desired interaction with a substrate of interest comprising selecting hosts or replicators which encode said novel molecules based upon cell or replicator growth caused by the desired interaction of the novel molecule and a selection molecule expressed by said host.