Abstract:
Methods for making a micromachined device (e.g. an microoptical submount) having positive features (extending up from a device surface) and negative features (extending into the device surface). The present techniques locate the positive feature and negative features according to a single mask step. In one embodiment, a hard mask is patterned on top of the device layer of an SOI wafer. Then, RIE is used to vertically etch to the etch stop layer, forming the positive feature. Then, the positive feature is masked, and metal or hard mask is deposited on the exposed areas of the etch stop layer. Then, portions of the device layer are removed, leaving the patterned metal layer on the etch stop layer. Then, the etch stop layer is removed in an exposed area, uncovering the handle layer. Then, the handle layer is etched in an exposed area to form the negative feature.
Abstract:
The present invention relates to a fabrication process relating to a fabrication process for manufacture of micro-electromechanical (MEM) devices such as cantilever supported beams. This fabrication process requires only two lithographic masking steps and offers moveable electromechanical devices with high electrical isolation. A preferred embodiment of the process uses electrically insulating glass substrate as the carrier substrate and single crystal silicon as the MEM component material. The process further includes deposition of an optional layer of insulating material such as silicon dioxide on top of a layer of doped silicon grown on a silicon substrate. The silicon dioxide is epoxy bonded to the glass substrate to create a silicon--silicon dioxide-epoxy-glass structure. The silicon is patterned using anisotropic plasma dry etching techniques. A second patterning then follows to pattern the silicon dioxide layer and an oxygen plasma etch is performed to undercut the epoxy film and to release the silicon MEM component. This two-mask process provides single crystal silicon MEMs with electrically isolated MEM component. Retaining silicon dioxide insulating material in selected areas mechanically supports the MEM component.
Abstract:
Microfabricated filters utilizing a bulk substrate structure and a thin film structure and a method for constructing such filters. The pores of the filters are defined by spaces between the bulk substrate structure and the thin film structure and are of substantially uniform width, length and distribution. The width of the pores is defined by the thickness of a sacrificial layer and therefore may be smaller than the limit of resolution obtainable with photolithography. The filters provide enhanced mechanical strength, chemical inertness, biological compatibility, and throughput. The filters are constructed using relatively simple fabrication techniques. Also, microfabricated containment wells and capsules constructed with such filters for the immunological isolation of cell transplants and a method for constructing such containment wells and capsules. The pores of the wells and capsules are large enough to let a desired biologically-active molecular product through, while blocking the passage of all larger immunological molecules. The containment wells and capsules provide enhanced biological compatibility and useful life.
Abstract:
A sensor element provided with a silicon substrate having a semiconductor circuit, a sensing-element portion formed on the silicon substrate and connected to the semiconductor circuit, and a cavity portion formed by removing a silicon substrate portion below the sensing-element portion, in which a removal resistance region having resistance against substrate removal is provided in the silicon substrate between the semiconductor circuit and the cavity portion.
Abstract:
A semiconductor device with a force and/or acceleration sensor (12), which has a spring-mass system (14, 16) responsive to the respective quantity to be measured and whose mass (16) bears via at least one resilient support element (14) on a semiconductor substrate (20). The semiconductor substrate (20) and the spring-mass system (14, 16) are integral components of a monocrystalline semiconductor crystal (10) with a IC-compatible structure. The three-dimensional structural form of the spring-mass system (12) is produced by anisotropic semiconductor etching, defined P/N junctions of the semiconductor layer arrangement functioning as etch stop means in order to more particularly create a gap (22) permitting respective movement of the mass (16) between the mass (16) and the semiconductor substrate (20).
Abstract:
A dissolved wafer process is modified by providing an etch control seal around the perimeter of an etch resistant microstructure, such as a micromechanical or microelectromechanical device, formed on a first substrate. The microstructure is defined and shaped by a surrounding trench in the first substrate. Selected areas of the microstructure and the first substrate are bonded to an etch resistant second substrate. The selected bonding areas may comprise raised areas of the first substrate, or raised areas of the second substrate corresponding to the selected bonding areas of the first substrate. A bonded area forming a ring extending around the perimeter of the microstructure and its defining trench forms an etch control seal. The first substrate of the bonded assembly is dissolved in a selective etch so that the etch resistant microstructure remains attached to the second substrate only at the bonded areas. The etch control seal reduces exposure of the microstructure to the etch by preventing the etch from contacting the microstructure until the etch leaks through the dissolving floor of the trench. This occurs only during the final stages of the wafer dissolution step, thus minimizing exposure of the microstructure to the damaging effects of the etch.
Abstract:
A semiconductor acceleration transducer is fabricated so that the semiconductor beam and the piezoelectric transducing element are accurately positioned relative to each other, and the impact resistance is improved. The fabrication process comprises a wafer preparing step for forming a buried layer between a substrate of a first conductivity type and an epitaxial layer of a second conductivity type, a doping step for forming a diffusion region of the first conductivity type in the epitaxial layer, and an etching step for removing unwanted portions of the substrate and the diffusion region from the bottom of the substrate to shape the beam supporting portion serving as a seismic mass. The buried layer is formed at such a position that the shape and position of the beam is determined by the buried layer. The buried layer may be a second conductivity type layer to determine the contour of the beam by stopping the etching process or may be a first conductivity type layer which is etched away to determine the contour of the beam with its diffusion contour.