Abstract:
A process for coating a plastic, electroconductive substrate is provided, comprising:(a) electrophoretically depositing on the substrate a curable, electrodepositable coating composition to form an electrodeposited coating over at least a portion of the substrate, the electrodepositable coating composition comprising a resinous phase dispersed in an aqueous medium, said resinous phase comprising: (1) a resin component containing an active hydrogen-containing, cationic or anionic resin comprising an acrylic, polyester, polyurethane and/or polyepoxide polymer; and (2) a curing agent; and (b) heating the coated substrate to a temperature less than 250° F. for a time sufficient to cure the electrodeposited coating on the substrate.
Abstract:
Photo-activated polymers and co-polymers exhibit colors in the visible spectrum when photo-activated. The photo-active polymers, co-polymers and combinations thereof may be utilized in articles to impart color to the articles. For example, the photo-active polymers may be utilized in printing technology, such as in 2D printing and/or in 3D-printing methods to impart colors to articles.
Abstract:
The invention relates to a process for preparing a building surface for decoration comprising the steps of application of a water-based non-cementitious surfacer material to the building surface, wherein the surfacer comprises 5 to 30% by weight of an aqueous dispersion of an organic polymer, said dispersion comprising 30 to 70% by weight of the organic polymer, 60 to 90% by weight of a filler and optionaly further additives and water and application of a glass fibre-based non-woven sheet onto the wet surfacer whereby one surface of the sheet is adhered to the wet surfacer.
Abstract:
A method (400) of additively manufacturing a composite part (102) comprises applying a thermosetting resin (252) to a non-resin component (108) to create a continuous flexible line (106) by pulling a non-resin component (108) through a first resin-part applicator (236), in which a first quantity of a first part (253) of the thermosetting resin (252) is applied to the non-resin component (108), and by pulling a non-resin component (108) through a second resin-part applicator (237), in which a second quantity of a second part (255) of the thermosetting resin (252) is applied to at least a portion of the first quantity of the first part (253) of the thermosetting resin (252), applied to the non-resin component (108). The method (400) further comprises routing the continuous flexible line (106) into a delivery guide (112) and depositing, via the delivery guide (112), a segment (120) of the continuous flexible line (106) along a print path (122).
Abstract:
A material for a surface modifying agent with which the problems of insufficient durability as abrasion and chemical resistances of surface modification effect in polyurethane surface modification by the prior surface modifying agent are resolved, and is immobilized in a matrix resin firmly and improved in durability. A reactive fluorine-containing highly branched polymer obtained by: polymerizing monomer A having in a molecule two or more radically polymerizable double bonds, monomer B having in a molecule a fluoroalkyl group and at least one radically polymerizable double bond, and monomer C having in a molecule an alcoholic hydroxy group and minimum, one radically polymerizable double bond, in presence of a polymerization initiator D in an amount of 5 % to 200 % by mole with respect to the number of moles of the monomer A; a curable composition containing the reactive fluorine-containing highly branched polymer; and a cured film obtained from the composition.
Abstract:
Provided are surface-treated fine particles which, when added to coatings for the production of films, exhibit excellent reactivity with respect to organosilicon compounds and resins that are matrix components of the coating films, and thereby allow the films to exhibit excellent performance. Oligomer-modified fine particles include inorganic oxide fine particles having a surface modified with an oligomer, the oligomer being derived from a metal alkoxide represented by Formula (1): RnM1(OR′)z-n (1) wherein M1: one or more elements selected from Si, Ti, Zr and Al; R and R′: one or more groups selected from alkyl groups of 1 to 8 carbon atoms, aryl groups and vinyl groups; n: an integer of from 0 to (z−2); and z: the valence of M1. The oligomer has a polymerization degree of 3 or more. The oligomer has a weight average molecular weight in the range of 1000 to 10000.
Abstract:
A digitally printed heat transfer label and method of manufacture is disclosed. The heat transfer label and method of manufacture provides a more efficient process with less waste, as well as prevents halos. The method comprises adding adhesive powder to a digital image printed on a substrate to produce a high stretch, multi-color photographic quality label for the apparel industry.
Abstract:
This antimony-doped tin oxide powder is an antimony-doped tin oxide powder characterized by: (A) including at least three kinds of ions selected from the group consisting of Sn2+, Sn4+, Sb3+ and Sb5+; (B) having a ratio of average Sn ionic radius to average Sb ionic radius of 1:(0.96 to 1.04); and (C) having an Sb content of 5 to 25 moles relative to a total of 100 moles of Sb and Sn, wherein the average Sn ionic radius is the average of ionic radii of Sn2+ and Sn4+, while the average Sb ionic radius is the average of ionic radii of Sb3+ and Sb5+.
Abstract:
A method for producing a substrate having dispersed particles of a dendrimer compound on the surface thereof, the method including: an application step including dissolving a phenyl azomethine dendrimer compound in a solvent to prepare a solution, and applying the solution on the surface of a substrate; and a volatilization step including volatilizing the solvent from the solution applied on the surface of the substrate, the phenyl azomethine dendrimer compound included in the solution having a concentration of no greater than 5 μmol/L is employed.
Abstract:
Provided is a novel pigment that has the ability to selectively reflect infrared light. The pigment is a black pigment which comprises a (Cr,Fe)2O3 solid solution, wherein the ratio of the Cr and the Fe (molar ratio) is (90-97):(10-3), the solid solution having a non-spinel structure.
Abstract translation:提供了具有选择性地反射红外光的能力的新型颜料。 颜料是黑色颜料,其包含(Cr,Fe)2 O 3固溶体,其中Cr和Fe(摩尔比)的比率为(90-97):(10-3),固溶体具有非 - 尖晶石结构。