Abstract:
The present invention is an alignment device for a bag containing one or more ports. The alignment device is attached to either the one or more ports or to the bag adjacent the one or more ports. The plate has an indicator or a unique outer edge shape that is designed to fit into a corresponding unique opening in a holder to ensure proper alignment of the bag and its port(s) in the holder. The plate is has a Series of holes equal to and in alignment with the one or more ports of the bag and the port(s) extend through the holes of the plate,
Abstract:
A valved microfluidics device, microfluidics cell-culture device and system incorporating the devices are disclosed. The valved microfluidics device includes a substrate, a microchannel through which liquid can be moved from one station to another within the device, and a pneumatic microvalve adapted to be switched between open and closed states to control the flow of fluid through a microchannel. The microvalve is formed of three flexible membranes, one of which is responsive to pneumatic pressure applied to the valve and the other two of which deform to produce a more sealable channel cross-section. The cell culture device provides valving to allow controlled loading of cells into the individual well of the device, and exchange of cell-culture components in the wells.
Abstract:
Adsorbent filter media particularly suited for removal of biological contaminants in process liquids. A porous fixed bed of adsorbent material is formed, using only a granular adsorbent and a water-insoluble thermoplastic binder. The resulting composite filter allows for a higher amount of adsorbent with smaller adsorbent particles than conventional depth filters. Elimination of cellulose fiber, as well as the elimination of the thermoset binder, results in reduced contamination of the process liquid.
Abstract:
The present invention relates to modified immunoglobulin-binding proteins, e.g., Staphylococcus protein A, having improved binding specificity for immunoglobulins and methods of making and using the same.
Abstract:
The device for spraying a reagent onto a support (81) adapted to retain microorganisms on a predetermined surface (82), comprises a spraying bell (3) as well as a nozzle (71) for emitting a jet of droplets of said reagent into a spraying chamber (34) comprised by said bell (3), said device also comprising an absorbent pad (5) mounted against said bell (3) transversely to said jet and closing said chamber (34) from the opposite side to said nozzle (71) with the exception of a circular central opening (51) provided in said pad (5), the diameter of said central opening (51) being adapted to enable a portion of said jet, when said device faces said support (81) and is at a predetermined distance therefrom, to pass through said central opening (51) over its entire area and be deposited on the whole of said predetermined surface (82) of said support (81).
Abstract:
The present invention relates to a selectively soluble polymer capable of binding to a desired molecules in an unclarified mixture containing various biological materials and the methods of using such a polymer to purify a molecule from such a mixture. The polymer is soluble in the mixture under a certain set of process conditions such as pH or temperature and/or salt concentration and is rendered insoluble and precipitates out of solution upon a change in the process conditions. The polymer is capable of binding to the desired molecule (protein, polypeptide, etc) and remains capable of binding to that molecule even after the polymer is precipitated out of solution. The precipitate can then be filtered out from the remainder of the stream and the desired biomolecule is recovered such as by elution and further processed.
Abstract:
The invention concerns a bag comprising a first conduit (13C) which extends longitudinally between a flow pump connector (11C) emerging on a first side (68) and a tangential filter connector (11M) emerging on a second side (69); a second conduit (13B) which extends longitudinally from a first side of said conduit (13C) between a supply container connector (11B) emerging on said first side (68), and another tangential flow connector (11N) emerging on said second side (69); a third conduit (13H) which extends from a second side of said conduit (13C), starting at a collecting container connector (11J), until it enters said first conduit (13C); and a fourth conduit (13A) which extends from the first side of said conduit (13C), starting at a transfer pump connector (11A), until it enters said second conduit (13B).
Abstract:
The invention concerns a device comprising a base (2) and a door (20), said device having a closed door position in which a circuit (8) of the device comprises a bag comprising two flexible films and connectors of the conveying network, and a press (9) comprising a first shell (16) disposed on a front face (5) of said base (2) and a second shell (17) disposed in said door (20); and a hinge system hinging said door (20) relative to said base (2), and disposed only on one side of said door (20) so as to form lateral clearances between said door (20) and said base (2) over the rest of a perimeter of said door (20)
Abstract:
A number of novel improved microfluidic configurations and systems and methods of manufacture and operation for a microfluidic invasion assay system.
Abstract:
A method for retention testing sterilizing grade filters comprises: a) providing a stock of Acholeplasma laidlawii; b) growing up the stock of A. laidlawii for about 24 hours or less in a single serum-free growth medium that supports cell growth to a high titer and yields a cellular morphology where the cells are small, deaggregated and spherical, thereby producing a bacterial culture; c) challenging a test filter by filtering the bacterial culture through the test filter at a known challenge level, thereby producing a filtrate downstream of the test filter; and d) detecting concentration of A. laidlawii in the filtrate. Serum-free growth media for cultivating or storing A. laidlawii are also described.