Abstract:
Methods are provided for processing a substrate comprising a bilayer barrier film thereon. In one aspect, a method comprises depositing a first barrier layer, depositing a second barrier layer on the first barrier layer, depositing a dielectric layer on the bilayer barrier film formed by the first barrier layer and the second barrier layer, and ultraviolet curing the dielectric layer. In another aspect, a method comprises depositing a first barrier layer, depositing a second barrier layer on the first barrier layer, depositing a dielectric layer on the bilayer barrier film formed by the first barrier layer and the second barrier layer, and curing the dielectric layer with an electron beam treatment.
Abstract:
A non-volatile memory device includes a plurality of pillars, where each of the plurality of pillars contains a non-volatile memory cell containing a steering element and a storage element and at least one of a top corner or a bottom corner of each of the plurality of pillars is rounded. A method of making non-volatile memory device includes forming a stack of device layers, and patterning the stack to form a plurality of pillars, where each of the plurality of pillars contains a non-volatile memory cell that contains a steering element and a storage element, and where at least one of top corner or bottom corner of each of the plurality of pillars is rounded.
Abstract:
Memory cells, and methods of forming such memory cells, are provided that include a steering element coupled to a carbon-based reversible resistivity switching material that has an increased resistivity, and a switching current that is less than a maximum current capability of the steering element used to control current flow through the carbon-based reversible resistivity switching material. In particular embodiments, methods and apparatus in accordance with this invention form a steering element, such as a diode, having a first width, coupled to a reversible resistivity switching material, such as aC, having a second width smaller than the first width.
Abstract:
A non-volatile memory cell includes a first electrode, a steering element, a metal oxide storage element located in series with the steering element, a dielectric resistor located in series with the steering element and the metal oxide storage element, and a second electrode.
Abstract:
Methods of forming memory cells are disclosed which include forming a pillar above a substrate, the pillar including a steering element and a memory element, and performing one or more etches vertically through the pillar to form multiple memory cells. Memory cells formed from such methods, as well as numerous other aspects are also disclosed.
Abstract:
Memory cells, and methods of forming such memory cells, are provided that include a carbon-based reversible resistivity switching material. In particular embodiments, methods in accordance with this invention form a memory cell by (a) depositing a layer of the carbon material above a substrate; (b) doping the deposited carbon layer with a dopant; (c) depositing a layer of the carbon material over the doped carbon layer; and (d) iteratively repeating steps (b) and (c) to form a stack of doped carbon layers having a desired thickness. Other aspects are also provided.
Abstract:
In some aspects, a microelectronic structure is provided that includes (1) a first conducting layer; (2) a first dielectric layer formed above the first conducting layer and having a feature that exposes a portion of the first conducting layer; (3) a graphitic carbon film disposed on a sidewall of the feature defined by the first dielectric layer and in contact with the first conducting layer at a bottom of the feature; and (4) a second conducting layer disposed above and in contact with the graphitic carbon film. Numerous other aspects are provided.
Abstract:
A nonvolatile memory cell includes a steering element located in series with a storage element. The storage element includes a carbon material and the memory cell includes a rewritable cell having multiple memory levels.
Abstract:
The present invention generally provides a method for forming a dielectric barrier with lowered dielectric constant, improved etching resistivity and good barrier property. One embodiment provides a method for processing a semiconductor substrate comprising flowing a precursor to a processing chamber, wherein the precursor comprises silicon-carbon bonds and carbon-carbon bonds, and generating a low density plasma of the precursor in the processing chamber to form a dielectric barrier film having carbon-carbon bonds on the semiconductor substrate, wherein the at least a portion of carbon-carbon bonds in the precursor is preserved in the low density plasma and incorporated in the dielectric barrier film.
Abstract:
A method for seasoning a deposition chamber wherein the chamber components and walls are densely coated with a material that does not contain carbon prior to deposition of an organo-silicon material on a substrate. An optional carbon-containing layer may be deposited therebetween. A chamber cleaning method using low energy plasma and low pressure to remove residue from internal chamber surfaces is provided and may be combined with the seasoning process.