Abstract:
A method and related system for accessing low pin count (LPC) memory or firmware memory includes selecting an LPC memory or a firmware memory according to an input signal, recording an address of the selected memory, determining weather to read or write data according to the input signal, and accessing data accordingly.
Abstract:
A method of integrating a post-etching cleaning process with deposition for a semiconductor device. A substrate having a damascene structure formed by etching a dielectric layer formed thereon using an overlying photoresist mask as an etching mask is provided. A cleaning process is performed by a supercritical fluid to remove the photoresist mask and post-etching by-products. An interconnect layer is formed in-situ in the damascene structure using the supercritical fluid as a reaction medium, wherein the cleaning process and the subsequent interconnect layer formation are performed in one process chamber or in different process chambers of a processing tool.
Abstract:
A method of forming an oxide layer. A fluid, such as water, is heated and pressurized to supercritical or near-supercritical conditions and mixed with at least one oxidizing agent. The supercritical state mixture of the fluid and at least one oxidizing agent is then applied on the workpiece, forming an oxide layer on the workpiece. The at least one oxidizing agent may comprise nitrogen, and the oxide layer formed on the workpiece may comprise a nitrogen doped oxide.
Abstract:
The present invention provides a photosensitive material for non-substrate liquid crystal display. This photosensitive material includes photo-initiator selected from the free-radical type or cation type photo-initiator or mixture thereof, photosensitive polymerizable monomers or oligomers selected from the group consisting of double-bond compounds, compounds having epoxy functional group and mixtures thereof, and modifier selected from the group consisting of long-alkyl-chain functional group, silicone-alkyl compounds, double-bond compounds and mixtures thereof. The photosensitive material can surround liquid crystal display cell and separate from assisting substrates that a non-substrate liquid crystal cell surrounded by photosensitive material is acquired.
Abstract:
A planarizing method for forming a patterned planarized aperture fill layer within an aperture employs a planarizing stop layer formed of a reductant based material, such as but not limited to a hydrogenated silicon nitride material. The reductant based material provides the planarizing stop layer with enhanced planarizing stop properties. The method is particularly useful within the context of CMP planarizing methods.
Abstract:
A method and system for monitoring the quality of a slurry utilized in a chemical mechanical polishing operation. A slurry is generally delivered through a tubular path during a chemical mechanical polishing operation. A laser light is generally transmitted from a laser light source, such that the laser light comes into contact with the slurry during the chemical mechanical polishing operation. The laser light can then be detected, after the laser light comes into contact with the slurry to thereby monitor the quality of the slurry utilized during the chemical mechanical polishing operation. The laser light that comes into contact with the slurry can be also be utilized to monitor a mixing ratio associated with the slurry.
Abstract:
An optical blood glucose detecting apparatus and an operating method thereof are disclosed. The optical blood glucose detecting apparatus includes a detecting module, an assisting and strengthening module, and a data processing module. The detecting module provides an incident optical signal passing through a detected portion of skin surface into a skin interstitial fluid, captures a blood glucose optical reflection message of the skin interstitial fluid, and it interferes the blood glucose optical reflection message and the incident optical signal to generate a detected data. The assisting and strengthening module provides a physical or chemical effect on a tissue region under the detected portion to strengthen the blood glucose optical reflection message. The data processing module processes the detected data to determine a blood glucose concentration.
Abstract:
Some embodiments relate to a manufacturing method for a semiconductor device. In this method, a semiconductor workpiece, which includes a metal gate electrode thereon, is provided. An opening is formed in the semiconductor workpiece to expose a surface of the metal gate. Formation of the opening leaves a polymeric residue on the workpiece. To remove the polymeric residue from the workpiece, a cleaning solution that includes an organic alkali component is used.
Abstract:
A layout configuration for a memory cell array includes at least a comb-like doped region having a first conductivity type and a fishbone-shaped doped region having a second conductivity type. The second conductivity type and the first conductivity type are complementary. Furthermore, the comb-like doped region and the fishbone-shaped doped region are interdigitated.
Abstract:
A phase retardance inspection instrument, comprising: a light source module for generating a single-wavelength light beam; a circularly polarized light generating module, comprising a polarizer and a first phase retarder, for receiving the single-wavelength light beam as it is guided to pass through the polarizer and the first phase retarder in order; and a detecting module, comprising a second phase retarder, a polarizing beam splitter, a first image sensor and a second image sensor, for receiving and guiding a circularly polarized light beam to travel through the second phase retarder and the polarizing beam splitter in order after it passes through a substrate under inspection, wherein the polarizing beam splitter splits an elliptically polarized light beam into intensity vector components of a left-hand circularly polarized light beam and a right-hand circularly polarized light beam, which are to be emitted into the first image sensor and the second image sensor, respectively.