Abstract:
This disclosure provides systems, methods, and apparatus for facilitating repair of inoperable MEMS display elements. A display apparatus can include a plurality of display elements over a substrate. Each display element can have a pixel output interconnect. The display apparatus also can include a plurality of conductive bridges each associated with the pixel output interconnects of a respective pair of adjacent display elements. A first conductive bridge can include an electrical connection between the pixel output interconnects of a first pair of adjacent display elements. A second conductive bridge associated with a second pair of adjacent display elements can be electrically isolated from the pixel output interconnects of at least one display element of the second pair of display elements. A laser or other means can be used to form an electrical connection between the first conductive bridge and the respective pair of adjacent display elements.
Abstract:
Some implementations provide automatic display mode selection for a device, such as a mobile display device, according to a hierarchy of criteria. Each display mode may correspond with a set of display parameter settings, which may include a color depth setting, a brightness setting, etc. In some examples, one of the criteria may correspond with a software application being executed on the device. Some implementations involve creating a display device user profile and controlling a display of a mobile display device according to the user profile. The user profile may be built gradually over some number of days/weeks/months after the first use of the device. In some implementations, display parameter setting information or other device setting information corresponding to data in a user profile, including but not limited to demographic data, may be received by a mobile display device from another device, such as a server.
Abstract:
This disclosure provides systems, methods and apparatus for providing stacks of optical films that may be used to provide increased on-axis display brightness. In one aspect, an apparatus or system may be provided that includes a light source, a first optical film having triangular cross-section, prismatic light-turning structures, and a second optical film having trapezoidal cross-section, prismatic light-turning structures. The first optical film may be interposed between the light source and the second optical film. In further aspects, a third optical film, similar to the first optical film, may be interposed between the light source and the first optical film. In yet further aspects, one or more additional optical films, similar to the second optical film, may be positioned in the stack such that the second optical film is between the first optical film and the additional optical film(s).
Abstract:
The invention relates to methods and apparatus for forming images on a display utilizing a control matrix to control the movement of MEMS-based light modulators.
Abstract:
This disclosure provides systems, methods and apparatus including devices that include a layer of passivation material covering at least a portion of an exterior surface of a thin film component within a microelectomechanical device. The thin film component may include an electrically conductive layer that connects via an anchor to a conductive surface on a substrate. The disclosure further provides processes for providing a layer of passivation material on an exterior surface of a thin film component and for electrically connecting that thin film component to a conductive surface on a substrate.
Abstract:
This disclosure provides systems, methods, and apparatus for generating images on a display. Images are generated by displaying, for a first color, a first number of subframes at a full intensity level and a second number of subframes at reduced intensity levels. A third number of subframes of a second color are displayed at a full illumination level and a fourth number of subframes of the second color are displayed at reduced illumination levels. The number of subframes of the second color shown at reduced illumination levels is fewer than the number of subframes of the first color shown at reduced intensity levels.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for forming an image on a display in a display device including a plurality of backlight segments. Each backlight segment is capable of illuminating a respective illumination display segment of a plurality of illumination display segments. In one aspect, a controller associated with the display device is capable of decomposing an image frame into a plurality of frame segments to be displayed on the plurality of illumination display segments. The controller can determine a separate frame segment specific contributing color (FSSCC) for each frame segment based on content of the respective frame segment and a criterion limiting the color difference between a pair of FSSCCs based on the spatial proximity of the respective display regions. The controller can display the image frame according to the plurality of determined FSSCCs.
Abstract:
This disclosure provides systems, methods, and apparatus for generating images on a display. A multi-primary display can include control logic that converts input image data into the multi-primary color space employed by the display by mapping the input pixel values into the XYZ color space according to a gamut mapping function and then decomposing the XYZ tristimulus values into color subfields associated with the display's primary colors. For example, such a process can be used to covert image frames encoded in an RGB color space into a RGBW color space. In some implementations, the control logic can adapt the gamut mapping and/or the decomposition processes based on a saturation level of the image being processed.
Abstract:
This disclosure provides systems, methods, and apparatus for generating images on a multi-primary display. A multi-primary display can include control logic that converts input image data into the multi-primary color space employed by the display by mapping the input pixel values into an intermediate color space according to a gamut mapping function and then decomposing the mapped pixel values into color subfields associated with the display's primary colors. The control logic can be configured to identify a lossy gamut mapping saturation parameter value to use in the gamut mapping process which results in a power-saving desaturated image that is perceived by the Human Visual System (HVS) as substantially maintaining its color fidelity.
Abstract:
This disclosure provides systems, methods and apparatus including processes that use two layers of resist, with a layer of etch stop material in between. The two layers of resist may be etched in separate processes to form devices having vias with sidewalls that extend through both layers of resist