Abstract:
An electronic device including a continuity sensor and electrical circuitry configured to detect and report the continuity state of an article, container or product packaging is disclosed. The continuity sensor includes a first substrate with first and second coils thereon, and a second substrate with a third coil thereon. The first coil has an integrated circuit electrically connected thereto. The first substrate is part of, or is attached or secured to a part of the article, container or packaging. The second substrate is another part of, or is attached or secured to another part of the article, container or packaging. One of the article, container or packaging parts is (re)movable with respect to the other part. The first and second coils have one coupling when the article, container or packaging is closed or sealed, and a different coupling when the article, container or packaging is open or unsealed.
Abstract:
High precision capacitors and methods for forming the same utilizing a precise and highly conformal deposition process for depositing an insulating layer on substrates of various roughness and composition. The method generally comprises the steps of depositing a first insulating layer on a metal substrate by atomic layer deposition (ALD); (b) forming a first capacitor electrode on the first insulating layer; and (c) forming a second insulating layer on the first insulating layer and on or adjacent to the first capacitor electrode. Embodiments provide an improved deposition process that produces a highly conformal insulating layer on a wide range of substrates, and thereby, an improved capacitor.
Abstract:
An electronic device including a continuity sensor and electrical circuitry configured to detect and report the continuity state of an article, container or product packaging is disclosed. The continuity sensor includes a first substrate with first and second coils thereon, and a second substrate with a third coil thereon. The first coil has an integrated circuit electrically connected thereto. The first substrate is part of, or is attached or secured to a part of the article, container or packaging. The second substrate is another part of, or is attached or secured to another part of the article, container or packaging. One of the article, container or packaging parts is (re)movable with respect to the other part. The first and second coils have one coupling when the article, container or packaging is closed or sealed, and a different coupling when the article, container or packaging is open or unsealed.
Abstract:
A ferroelectric memory cell (1) and a memory device (100) comprising one or more such cells (1). The ferroelectric memory cell comprises a stack (4) of layers arranged on a flexible substrate (3). Said stack comprises an electrically active part (4a) and a protective layer (11) for protecting the electrically active part against scratches and abrasion. Said electrically active part comprises a bottom electrode layer (5) and a top electrode layer (9) and at least one ferroelectric memory material layer (7) between said electrodes. The stack further comprises a buffer layer (13) arranged between the top electrode layer (9) and the protective layer (11). The buffer layer (13) is adapted for at least partially absorbing a lateral dimensional change (ΔL) occurring in the protective layer (11) and thus preventing said dimensional change (ΔL) from being transferred to the electrically active part (4a), thereby reducing the risk of short circuit to occur between the electrodes.
Abstract:
High precision capacitors and methods for forming the same utilizing a precise and highly conformal deposition process for depositing an insulating layer on substrates of various roughness and composition. The method generally comprises the steps of depositing a first insulating layer on a metal substrate by atomic layer deposition (ALD); (b) forming a first capacitor electrode on the first insulating layer; and (c) forming a second insulating layer on the first insulating layer and on or adjacent to the first capacitor electrode. Embodiments provide an improved deposition process that produces a highly conformal insulating layer on a wide range of substrates, and thereby, an improved capacitor.
Abstract:
A bottle having a sealing device and a substrate attached thereto, and methods of attaching the substrate to the bottle are disclosed. Methods include placing the substrate on the bottle, the bottle having a break line, and the substrate having a wireless communication device having an antenna, an integrated circuit, and a sensing line thereon. Methods further include adhering a first part of the substrate including the antenna to a first portion of the bottle that does not include the break line, and a second part of the substrate including the sensing line to a second portion of the bottle and on/over a break line. The bottle includes an interface between the sealing device and defines a break line. The substrate including the wireless communication device is on/over the bottle, at least a part of the sealing device and the break line.
Abstract:
A method of and system for manufacturing an electronic device, a curable conductive adhesive for use in the same, and an electronic device are disclosed. The method includes printing a conductive adhesive onto pads at ends of traces on a substrate, placing one or more components having a non-standard size and/or shape onto the pads with the conductive adhesive thereon, and after the component(s) have been placed onto the pads, curing the conductive adhesive at a predetermined temperature or with light having a predetermined wavelength (band). The system comprises a printer configured to print a conductive adhesive onto pads at ends of traces on a substrate, a surface mounting machine configured to place one or more components having a non-standard size and/or shape onto the pads with the conductive adhesive thereon, and a curing station configured to cure the conductive adhesive after the component(s) have been placed onto the pads.
Abstract:
A wireless communication device and methods of manufacturing and using the same are disclosed. The wireless communication device includes a substrate with an antenna and/or inductor thereon, a patterned ferrite layer overlapping the antenna and/or inductor, and a capacitor electrically connected to the antenna and/or inductor. The wireless communication device may further include an integrated circuit including a receiver configured to convert a first wireless signal to an electric signal and a transmitter configured to generate a second wireless signal, the antenna being configured to receive the first wireless signal and transmit or broadcast the second wireless signal. The patterned ferrite layer advantageously mitigates the deleterious effect of metal objects in proximity to a reader and/or transponder magnetically coupled to the antenna.
Abstract:
A method for making an electronic device, such as a MOS transistor, including the steps of forming a plurality of semiconductor islands on an electrically functional substrate, printing a first dielectric layer on or over a first subset of the semiconductor islands and optionally a second dielectric layer on or over a second subset of the semiconductor islands, and annealing. The first dielectric layer contains a first dopant, and the (optional) second dielectric layer contains a second dopant different from the first dopant. The dielectric layer(s), semiconductor islands and substrate are annealed sufficiently to diffuse the first dopant into the first subset of semiconductor islands and, when present, the second dopant into the second subset of semiconductor islands.