Abstract:
Embodiments herein provide apparatus and methods for performing a deposition and a patterning process on a spacer layer with good profile control in multiple patterning processes. In one embodiment, a method for depositing and patterning a spacer layer during a multiple patterning process includes conformally forming a spacer layer on an outer surface of a patterned structure disposed on a substrate, wherein the patterned structure has a first group of openings defined therebetween, selectively treating a first portion of the spacer layer formed on the substrate without treating a second portion of the spacer layer, and selectively removing the treated first portion of the spacer layer.
Abstract:
Embodiments described herein provide for a method of forming an etch selective hardmask. An amorphous carbon hardmask is implanted with various dopants to increase the hardness and density of the hardmask. The ion implantation of the amorphous carbon hardmask also maintains or reduces the internal stress of the hardmask. The etch selective hardmask generally provides for improved patterning in advanced NAND and DRAM devices.
Abstract:
Embodiments of the technology include a semiconductor patterning method. The method may include forming a layer of masking material on regions of dielectric material above a semiconductor substrate. The method may include forming a trench through the masking material. This transformation may expose at least a portion of the dielectric material. The method may include forming a protective layer over the exposed portion of the dielectric material. The method may involve removing the masking material from the semiconductor substrate.
Abstract:
Methods of depositing thin, low dielectric constant layers that are effective diffusion barriers on metal interconnects of semiconductor circuits are described. A self-assembled monolayer (SAM) of molecules each having a head moiety and a tail moiety are deposited on the metal. The SAM molecules self-align, wherein the head moiety is formulated to selectively bond to the metal layer leaving the tail moiety disposed at a distal end of the molecule. A dielectric layer is subsequently deposited on the SAM, chemically bonding to the tail moiety of the SAM molecules.
Abstract:
Etching of a thin film stack including a lower thin film layer containing an advanced memory material is carried out in an inductively coupled plasma reactor having a dielectric RF window without exposing the lower thin film layer, and then the etch process is completed in a toroidal source plasma reactor.
Abstract:
Methods of patterning low-k dielectric films are described. In an example, a method of patterning a low-k dielectric film involves forming and patterning a mask layer above a low-k dielectric layer. The low-k dielectric layer is disposed above a substrate. The method also involves modifying exposed portions of the low-k dielectric layer with a plasma process. The method also involves, in the same operation, removing, with a remote plasma process, the modified portions of the low-k dielectric layer selective to the mask layer and unmodified portions of the low-k dielectric layer.
Abstract:
Etching of a thin film stack including a lower thin film layer containing an advanced memory material is carried out in an inductively coupled plasma reactor having a dielectric RF window without exposing the lower thin film layer, and then the etch process is completed in a toroidal source plasma reactor.
Abstract:
A method includes flowing an evaporated low vapor pressure organic molecule (OM) into a processing chamber including a substrate. The method further includes depositing, in the processing chamber, the low vapor pressure OM onto at least a portion of the substrate at a first temperature and a first pressure to form a self-assembled monolayer (SAM) on at least the portion of the substrate. The method further includes annealing, in the processing chamber, the SAM on at least the portion of the substrate at a second temperature and a second pressure. The second pressure is greater than the first pressure and the second temperature is greater than the first temperature.
Abstract:
A method for processing a substrate is described. The method includes forming a metal containing resist layer onto a substrate, patterning the metal containing resist layer, and performing a post exposure bake on the metal containing resist layer. The post exposure bake on the metal containing resist layer is a field guided post exposure bake operation and includes the use of an electric field to guide the ions or charged species within the metal containing resist layer. The field guided post exposure bake operation may be paired with a post development field guided bake operation.
Abstract:
Exemplary processing methods may include providing a silicon-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be housed in the processing region. The substrate may define a feature. The methods may include forming plasma effluents of the silicon-containing precursor. The methods may include depositing a silicon-containing material on the substrate. The methods may include providing an oxygen-containing precursor to the processing region, forming plasma effluents of the oxygen-containing precursor, and contacting the silicon-containing material with the plasma effluents of the oxygen-containing precursor to form a silicon-and-oxygen-containing material. The methods may include providing a fluorine-containing precursor to the processing region, forming plasma effluents of the fluorine-containing precursor, and etching the silicon-and-oxygen-containing material from a top, a sidewall, or both of the feature with the plasma effluents of the fluorine-containing precursor.