Abstract:
Channel state information (CSI) feedback of common CSI components is discussed. An example user equipment (UE) includes a receiver circuit, processor, and transmitter circuit. The receiver circuit is configured to receive CSI configuration information for a plurality of downlink (DL) cells that indicates a first group of two or more of the DL cells and at least one CSI component designated for common reporting for the first group. The processor is configured to calculate a group value for each of the at least one CSI components designated for common reporting for the first group and selectively calculate, for each DL cell of the first group, individual values for any CSI components not designated for common reporting for the first group. The transmitter circuit is configured to transmit the group value for each of the designated CSI components and the individual values for any additional CSI components.
Abstract:
In providing feedback to an eNB in an LTE network for downlink scheduling and link adaptation, a UE issues a channel state information (CSI) report that includes a channel quality index (CQI). The reported CQI should include all UE receiver processing capabilities, including NAICS (network assisted interference cancellation and suppression) capability to cancel and suppress interference. Described are measures that may be taken to provide more accurate reporting of CSI by a terminal with NAICS capability.
Abstract:
Various embodiments herein are directed to multi-Transmission Time Interval (TTI) scheduling for data transmission for system operating above the 52.6 GHz carrier frequency. Other embodiments may be disclosed and/or claimed.
Abstract:
Technology for a user equipment (UE) operable to adjust a receiver timing is disclosed. The UE can decode a plurality of channel-state information reference signals (CSI-RSs) received from a plurality of cooperating nodes, wherein the plurality of cooperating nodes are included in a coordination set of a Coordinated MultiPoint (CoMP) system. The UE can generate a plurality of received RS timings from the plurality of CSI-RSs, wherein the received RS timings represent timings from the plurality of cooperating nodes. The UE can determine a composite received RS timing from the plurality of received RS timings. The UE can adjust the receiver timing based on the composite received RS timing.
Abstract:
Methods, systems, and storage media for providing multi-cell, multi-point single user (SU) multiple input and multiple output (MIMO) operations are described. In embodiments, an apparatus may receive and process a first set of one or more independent data streams received in a downlink channel from a first transmission point. The apparatus may receive and process a second set of one or more independent data streams received in a downlink channel from a second transmission point. The apparatus may process control information received from the first transmission point or the second transmission point. The control information may include an indication of a quasi co-location assumption to be used for estimating channel characteristics for reception of the first set of one or more independent data streams or the second set of one or more independent data streams. Other embodiments may be described and/or claimed.
Abstract:
Dynamic transmission of non-zero power channel state information resource signals and interference measurement resources is described. Such dynamic transmission reduces or eliminates a need to buffer and store channel and interference measurements The described approach also reduces the overhead due to transmission of those resources and enables flexible time-domain channel state information requests.
Abstract:
Systems and technologies described herein provide functionality for a cellular base station to dynamically indicate a reception (Rx) beam to be used by a user equipment (UE). The Rx beam can be indicated explicitly or implicitly. The UE can, for example, use the Rx beam for Physical Downlink Shared Channel (PDSCH) reception, Channel State Information Reference Signal (CSI-RS) measurements, and/or Channel State Information (CSI) calculation at the UE. Systems and technologies described herein are generally useful for systems that use multiple transmission (Tx) beams and/or that support Coordinated Multipoint (CoMP) transmission technology.
Abstract:
Methods, systems, and storage media for providing multi-cell, multi-point single user (SU) multiple input and multiple output (MIMO) operations are described. In embodiments, an apparatus may receive and process a first set of one or more independent data streams received in a downlink channel from a first transmission point. The apparatus may receive and process a second set of one or more independent data streams received in a downlink channel from a second transmission point. The apparatus may process control information received from the first transmission point or the second transmission point. The control information may include an indication of a quasi co-location assumption to be used for estimating channel characteristics for reception of the first set of one or more independent data streams or the second set of one or more independent data streams. Other embodiments may be described and/or claimed.
Abstract:
Various embodiments are generally directed to improved channel quality information feedback techniques. In one embodiment, for example, an evolved node B (eNB) may comprise a processor circuit, a communication component for execution by the processor circuit to receive a channel quality index for a physical downlink shared channel (PDSCH), the channel quality index associated with a defined reference resource, and a selection component for execution by the processor circuit to select a modulation and coding scheme (MCS) for transmission over the PDSCH of user equipment (UE) data in one or more resource blocks, the selection component to compensate for a difference between a cell-specific reference signal (CRS) overhead of the defined reference resource and a CRS overhead of the one or more resource blocks when selecting the MCS. Other embodiments are described and claimed.
Abstract:
An apparatus, computer-readable medium, and method to determine a user equipment (UE) location in a wireless network using signals from a wireless local-area network are disclosed. A wireless communication network entity may be configured to send WLAN assistance data to a UE. The WLAN assistance data may include a list of one or more WLAN access points (APs). The wireless communication network entity may receive location information from the UE. The location information may be based on measurements of signals from one or more of the WLAN APs. The wireless communication network entity may determine an estimate of the location of the UE based on the location information and stored information at the wireless communication network. The wireless communication network entity may determine the estimate of the location of the UE based on the measurements of the signals of the WLAN APs and a geographic position of the WLAN APs.