Abstract:
An evolved Node B (eNB) and method for coherent coordinated multipoint transmission with per CSI-RS feedback are generally described herein. The eNB may configure a first cooperating point and a second cooperating point to jointly transmit a multi-node channel-state information (CSI) reference signal (RS) (CSI-RS) in predetermined resource elements of a resource block. The eNB may receive CSI reports as feedback from user equipment (UE). The CSI reports may include a precoding matrix indicator (PMI) indicating relative phase information between the cooperating points based on the multi-node CSI-RS. The CSI reports for the multi-node CSI-RS may be restricted to a PMI of rank-1. The eNB may configure the cooperating points for a coherent joint transmission to the UE based at least on the relative phase information. The coherent joint transmission may also be jointly beamformed based on single-node PMIs.
Abstract:
The embodiments described herein relate to a user equipment (“UE”) and a plurality of nodes in a wireless network. A UE may be adapted to receive from a node a discovery signal that includes a base sequence. The base sequence may distinguish a first group of collocated nodes, comprising a first cell cluster, from a second group of collocated nodes, comprising a second cell cluster. The UE may further be adapted to receive from the node an orthogonal sequence, also included in the discovery signal. The orthogonal sequence may distinguish a first cell from other collocated cells so that cells within a cell cluster are separately identifiable. In further embodiments, the conjugate of sequences may be used to increase the amount of sequences available to distinguish cells and/or cell clusters. Other embodiments are described herein.
Abstract:
Technology for reporting periodic channel state information (CSI) is disclosed. One method can include determining a reporting period (Npd) of a user equipment (UE) for a serving cell. A Time-Division Duplex (TDD) uplink-downlink (UL-DL) configuration of a primary cell of the UE can be identified. A periodic CSI report for the serving cell can be transmitted, from the UE to the eNB, using a physical uplink control channel (PUCCH) on the primary cell according to the reporting period. The reporting period of Npd=1 can be used for the serving cell if the TDD UL-DL configuration of the primary cell is one of 0, 1, 3, 4, or 6 and all UL subframes of the primary cell in a radio frame are used for periodic CSI reporting.
Abstract:
A cell-selection and a cell re-selection process include a wireless device that receives a signal from at least one node of a wireless network. The received signal can be a reference signal, an uplink signal, or a downlink signal, or a combination thereof. Location information of the wireless device is determined based on the received signal and transmitted to the wireless network. Information is received from the wireless network that contains a list of candidate nodes to which the wireless device can connect to the wireless network. The list of candidate nodes comprises a list of macro cell nodes, low-power cell nodes, or a combination thereof. The wireless device searches through the information containing the list of candidate nodes to determine a node for a connection to the wireless network.
Abstract:
Embodiments of the present disclosure include methods and apparatuses, for a third generation partnership project (3GPP) enhanced NodeB (eNB) to transmit parameters of a wake-up procedure with a 3GPP user equipment (UE). After the transmission, the eNB may enter a low power state wherein it monitors for the wake-up signal from the UE, the wake-up signal being based at least in part on the transmitted parameters of the wake-up procedure. When the eNB receives the wake-up signal, the eNB may enter the high-power state and transmit a connection establishment signal to the UE.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for configuring coordinated multipoint (CoMP) for network devices. In various embodiments, configuration of the CoMP may be based on channel state information reference signals. Other embodiments may be described and/or claimed.
Abstract:
Examples are disclosed for causing one or more subframes to be transmitted from a base station for a wireless network based on beamforming or transmission power characteristics. In some examples, an interference report may be received at a base station via a backhaul communication link. The interference report may indicate measured interference from the base station as measured at one or more wireless devices. The base station may transmit subsequent subframes in a manner to mitigate the previously reported interference. Other examples are described and claimed.
Abstract:
In a multi-antenna, multicarrier transmitter, a multicarrier communication signal is generated by normalizing beamforming matrices based on an average subcarrier power loading for each of the transmit antennas. One or more spatial streams may be transmitted by two or more antennas.
Abstract:
A generation node B (gNB) configured for aperiodic channel state information reference signal (CSI-RS) triggering and transmission may encode signalling for transmission to a user equipment (UE). The signalling to indicate an aperiodic Triggering Offset (aperiodicTriggeringOffset). The aperiodic Triggering Offset may comprise a slot offset. The gNB may encode a downlink control information (DCI) for transmission that may trigger transmission of a CSI-RS in one or more aperiodic CSI-RS resource set(s) (i.e., in one or more slots (n)). The DCI triggers transmission of the aperiodic CSI-RS within a triggered slot with the slot offset (i.e., the aperiodicTriggeringOffset). The gNB may transmit the CSI-RS in resource elements of the triggered slot in accordance with the slot offset, when CSI-RS resources are available in the slot at the slot offset. The gNB may postpone transmission of the aperiodically triggered CSI-RS to a first available downlink slot when the CSI-RS resources are not available in the triggered slot at the slot offset.
Abstract:
Embodiments of apparatus and methods for signaling for resource allocation and scheduling in 5G-NR integrated access and backhaul are generally described herein. In some embodiments, User Equipment configured for reporting a channel quality indicator (CQI) index in a channel state information (CSI) reference resource assumes a physical resource block (PRB) bundling size of two PRBs to derive the CQI index.