摘要:
A semiconductor device comprises a silicon substrate, an electrical wiring metal, an insulating film formed on the silicon substrate, a plurality of contact holes formed in the insulating film for connecting the silicon substrate and the electrical wiring metal to each other, and a titanium silicide film formed in the contact holes. The thickness of the titanium silicide film is 10 nm to 120 nm or, preferably, 20 nm to 84 nm. Semiconductor regions and the electrical wiring metal are connected to each other through the titanium silicide film.
摘要:
A Co silicide layer having a low resistance and a small junction leakage current is formed on the surface of the gate electrode, source and drain of MOSFETS by silicidizing a Co film deposited on a main plane of a wafer by sputtering using a high purity Co target having a Co purity of at least 99.99% and Fe and Ni contents of not greater than 10 ppm, preferably having a Co purity of 99.999%.
摘要:
A Co silicide layer having a low resistance and a small junction leakage current is formed on the surface of the gate electrode, source and drain of MOSFETS by silicidizing a Co film deposited on a main plane of a wafer by sputtering using a high purity Co target having a Co purity of at least 99.99% and Fe and Ni contents of not greater than 10 ppm, preferably having a Co purity of 99.999%.
摘要:
A Co silicide layer having a low resistance and a small junction leakage current is formed on the surface of the gate electrode, source and drain of MOSFETs by silicidizing a Co film deposited on a main plane of a wafer by sputtering using a high purity Co target having a Co purity of at least 99.99% and Fe and Ni contents of not greater than 10 ppm, preferably having a Co purity of 99.999%.
摘要:
Negative characteristic MISFETs, which are of the same channel conductivity type and which have different threshold voltages, are formed in a doped silicon thin film deposited over a substrate and are connected in channel-to-channel series with each other. The pair of series-connected negative characteristic MISFETs, a resistive element, an information storage capacitive element and a transfer MISFET constitute an SRAM memory cell. Equivalently, a negative characteristic MISFET having a current-voltage characteristic defined by a negative resistance curve can be used in lieu of the pair of series-connected negative characteristic MISFETs in the formation of the individual memory cells of the SRAM. The negative resistance curve of the negative characteristic MISFET is shaped such that the linear current-voltage characteristic curve corresponding to the resistive element of the memory cell intersects the negative resistance curve at at least three location points. The negative characteristic MISFET, like the pair of series-connected negative characteristic MISFETs, has an active region formed in a doped thin film silicon (polycrystalline silicon) layer insulatedly above a substrate main surface. The resistive element is also formed in a thin film silicon layer either integrally with the negative characteristic MISFET or in a separate thin film silicon layer and in series electrical connection with the negative characteristic MISFET.
摘要:
After contact holes for the P- and N-type source or drain regions of P- and N-channel MOSFETs have been made at a common step, an N-type impurity is ion-implanted into at least the N-type source or drain regions through the contact holes. The N-type impurity is annealed to fornm an N-type region which is deeper than the N-type source or drain regions. During the annealing treatment, the N-type source or drain regions are covered with an insulating film.
摘要:
After contact holes for the P- and N-type source or drain regions of P- and N-channel MOSFETs have been made at a common step, an N-type impurity is ion-implanted into at least the N-type source or drain regions through the contact holes. The N-type impurity is annealed to form an N-type region which is deeper than the N-type source or drain regions. During the annealing treatment, the N-type source or drain regions are covered with an insulating film.
摘要:
The present invention relates to a compound represented by Formulas 1, 2 or 3 as described herein, and a nucleic acid each of which contains a dye exhibiting an exciton effect, a method of producing such a nucleic acid by using the compound, and a kit for producing the nucleic acid.
摘要:
Provided are a method and a kit for detecting 5-hydroxymethylcytosine in a nucleic acid. The method is a method for detecting 5-hydroxymethylcytosine in a nucleic acid, comprising the steps of: (1) oxidizing 5-hydroxymethylcytosine in a nucleic acid sample by treating the nucleic acid sample with a tungstic acid-based oxidizing agent comprising peroxotungstic acid, tungstic acid, a salt thereof, or a combination thereof with a reoxidizing agent; and (2) determining the position of the oxidized 5-hydroxymethylcytosine in the nucleic acid sample.
摘要:
In a complete CMOS SRAM having a memory cell composed of six MISFETs formed over a substrate, a capacitor element having a stack structure is formed of a lower electrode covering the memory cell, an upper electrode, and a capacitor insulating film (dielectric film) interposed between the lower electrode and the upper electrode. One electrode (the lower electrode) of the capacitor element is connected to one storage node of a flip-flop circuit, and the other electrode (the upper electrode) is connected to the other storage node. As a result, the storage node capacitance of the memory cell of the SRAM is increased to improve the soft error resistance.