Abstract:
Stacked semiconductor die assemblies with thermal spacers and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a thermally conductive casing defining a cavity, a stack of first semiconductor dies within the cavity, and a second semiconductor die stacked relative to the stack of first dies and carried by a package substrate. The semiconductor die assembly further includes a thermal spacer disposed between the package substrate and the thermally conductive casing. The thermal spacer can include a semiconductor substrate and plurality of conductive vias extending through the semiconductor substrate and electrically coupled to the stack of first semiconductor dies, the second semiconductor die, and the package substrate.
Abstract:
Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.
Abstract:
Semiconductor device assemblies having stacked semiconductor dies and thermal transfer devices that include vapor chambers are disclosed herein. In one embodiment, a semiconductor device assembly includes a first semiconductor die, a second semiconductor die at a base region of the first die, and a thermal transfer device attached to a peripheral region of the first die and extending over the second die. The thermal transfer device includes a conductive structure having an internal cavity and a working fluid at least partially filling the cavity. The conductive structure further includes first and second fluid conversion regions adjacent the cavity. The first fluid conversion region transfers heat from at least the peripheral region of the first die to a volume of the working fluid to vaporize the volume in the cavity, and the second fluid conversion region condenses the volume of the working fluid in the cavity after it has been vaporized.
Abstract:
Stacked semiconductor die assemblies with thermal spacers and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a thermally conductive casing defining a cavity, a stack of first semiconductor dies within the cavity, and a second semiconductor die stacked relative to the stack of first dies and carried by a package substrate. The semiconductor die assembly further includes a thermal spacer disposed between the package substrate and the thermally conductive casing. The thermal spacer can include a semiconductor substrate and plurality of conductive vias extending through the semiconductor substrate and electrically coupled to the stack of first semiconductor dies, the second semiconductor die, and the package substrate.
Abstract:
Stacked semiconductor die assemblies having memory dies stacked between partitioned logic dies and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a first logic die, a second logic die, and a thermally conductive casing defining an enclosure. The stack of memory dies can be disposed within the enclosure and between the first and second logic dies.