Abstract:
An optoelectronic semiconductor chip includes a semiconductor layer sequence. The semiconductor layer sequence includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type, and an active zone having a p-n junction, which active zone is formed between the first semiconductor region and the second semiconductor region. The semiconductor layer sequence is arranged on a carrier. The semiconductor chip also includes a first contact, which is provided for electrically connecting the first semiconductor region, and a second contact, which is different from the first contact and which is provided for electrically connecting the second semiconductor region. In addition, the semiconductor chip includes a first capacitive electrical element, which is connected in parallel with the p-n junction and which has a first dielectric element.
Abstract:
A light emitting diode chip includes a semiconductor layer sequence having an active layer that generates electromagnetic radiation, wherein the light emitting diode chip has a radiation exit area at a front side and a mirror layer at least in regions at a rear side situated opposite the radiation exit area, a protective layer is arranged on the mirror layer, the protective layer includes a transparent conductive oxide, the mirror layer adjoins the semiconductor layer sequence at an interface situated opposite the protective layer, first and second layers, the first and second electrical connection layers face the rear side of the semiconductor layer sequence and are electrically insulated from one another, and a partial region of the second electrical connection layer extends from the rear side of the semiconductor layer sequence through at least one perforation of the active layer in a direction toward the front side.
Abstract:
A radiation-emitting semiconductor chip includes a carrier and a semiconductor body having a semiconductor layer sequence, wherein an emission region and a protective diode region are formed in the semiconductor body having the semiconductor layer sequence; the semiconductor layer sequence includes an active region that generates radiation and is arranged between a first semiconductor layer and a second semiconductor layer; the first semiconductor layer is arranged on a side of the active region facing away from the carrier; the emission region has a recess extending through the active region; the first semiconductor layer, in the emission region, electrically conductively connects to a first connection layer, wherein the first connection layer extends in the recess from the first semiconductor layer toward the carrier; the second semiconductor layer, in the emission region, electrically conductively connects to a second connection layer.
Abstract:
An optoelectronic semiconductor chip is disclosed. In an embodiment the optoelectronic semiconductor chip includes a semiconductor body of semiconductor material, a p-contact layer and an n-contact layer. The semiconductor body includes an active layer intended for generating radiation. The semiconductor body includes a p-side and an n-side, between which the active layer is arranged. The p-contact layer is intended for electrical contacting the p-side. The n-contact layer is intended for electrical contacting the n-side 1b. The n-contact layer contains a TCO layer and a mirror layer, the TCO-layer being arranged between the n-side of the semiconductor body and the mirror layer.
Abstract:
An optoelectronic semiconductor chip includes a semiconductor layer sequence. The semiconductor layer sequence includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type, and an active zone having a p-n junction, which active zone is formed between the first semiconductor region and the second semiconductor region. The semiconductor layer sequence is arranged on a carrier. The semiconductor chip also includes a first contact, which is provided for electrically connecting the first semiconductor region, and a second contact, which is different from the first contact and which is provided for electrically connecting the second semiconductor region. In addition, the semiconductor chip includes a first capacitive electrical element, which is connected in parallel with the p-n junction and which has a first dielectric element.
Abstract:
An optoelectronic semiconductor chip includes a semiconductor body including n-conducting and p-conducting regions, an active region generating electromagnetic radiation, a mirror layer reflecting the electromagnetic radiation, and an encapsulating layer sequence formed with an insulating material, wherein the mirror layer is arranged at an underside of the p-conducting region, the active region is arranged at a side of the p-conducting region facing away from the mirror layer, the n-conducting region is arranged at a side of the active region facing away from the p-conducting region, the encapsulation layer sequence covers the semiconductor body at the outer surface thereof in places, the encapsulation layer sequence extends at the outer surface of the semiconductor body from the active region along the p-conducting region as far as below the mirror layer, and the encapsulation layer sequence includes at least one encapsulation layer which is an ALD layer or consists of an ALD layer.
Abstract:
A composite substrate has a carrier and a utility layer. The utility layer is attached to the carrier by means of a dielectric bonding layer and the carrier contains a radiation conversion material. Other embodiments relate to a semiconductor chip having such a composite substrate, a method for producing a composite substrate and a method for producing a semiconductor chip with a composite substrate.