摘要:
The present invention provides methods for forming at least partially relaxed strained material layers on a target substrate. The methods include forming islands of the strained material layer on an intermediate substrate, at least partially relaxing the strained material islands by a first heat treatment, and transferring the at least partially relaxed strained material islands to the target substrate. The at least partial relaxation is facilitated by the presence of low-viscosity or compliant layers adjacent to the strained material layer. The invention also provides semiconductor structures having an at least partially relaxed strained material layer, and semiconductor devices fabricated using an at least partially relaxed strained material layer.
摘要:
A light emitting device includes a first active region, a second active region, and a tunnel junction. The tunnel junction includes a layer of first conductivity type and a layer of second conductivity type, both thinner than a layer of first conductivity type and a layer of second conductivity type surrounding the first active region. The tunnel junction permits vertical stacking of the active regions, which may increase the light generated by a device without increasing the size of the source.
摘要:
A process for growing semi-insulating layers of indium phosphide and other group III-V materials through the use of halide dopant or etchant introduction during growth. Gas phase epitaxial growth techniques are utilized at low temperatures to produce indium phosphide layers having a resistivity greater than approximately 10.sup.7 ohm-cm. According to the preferred embodiment carbon tetrachloride is used as a dopant at flow rates above 5 sccm to grow the layers with substrate growth temperatures ranging from approximately 460.degree. C. to 525.degree. C. This temperature range provides an advantage over the transition metal techniques for doping indium phosphide since the high temperatures generally required for those techniques limit the ability to control growth. Good surface morphology is also obtained through the growth according to the present invention. The process may be used to form many types of group III-V semiconductor devices.
摘要:
A substrate including a host and a seed layer bonded to the host is provided, then a semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region is grown on the seed layer. In some embodiments, a bonding layer bonds the host to the seed layer. The seed layer may be thinner than a critical thickness for relaxation of strain in the semiconductor structure, such that strain in the semiconductor structure is relieved by dislocations formed in the seed layer, or by gliding between the seed layer and the bonding layer an interface between the two layers. In some embodiments, the host may be separated from the semiconductor structure and seed layer by etching away the bonding layer.
摘要:
A device includes a semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region and a plurality of layer pairs disposed within one of the n-type region and the p-type region. Each layer pair includes an InGaN layer and pit-filling layer in direct contact with the InGaN layer. The pit-filling layer may fill in pits formed in the InGaN layer.
摘要:
A device includes a semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region and a plurality of layer pairs disposed within one of the n-type region and the p-type region. Each layer pair includes an InGaN layer and pit-filling layer in direct contact with the InGaN layer. The pit-filling layer may fill in pits formed in the InGaN layer.
摘要:
A photonic crystal is grown within a semiconductor structure, such as a III-nitride structure, which includes a light emitting region disposed between an n-type region and a p-type region. The photonic crystal may be multiple regions of semiconductor material separated by a material having a different refractive index than the semiconductor material. For example, the photonic crystal may be posts of semiconductor material grown in the structure and separated by air gaps or regions of masking material. Growing the photonic crystal, rather than etching a photonic crystal into an already-grown semiconductor layer, avoids damage caused by etching which may reduce efficiency, and provides uninterrupted, planar surfaces on which to form electric contacts.
摘要:
In some embodiments of the invention, a device includes a substrate and a semiconductor structure. The substrate includes a wavelength converting element comprising a wavelength converting material disposed in a transparent material, a seed layer comprising a material on which III-nitride material will nucleate, and a bonding layer disposed between the wavelength converting element and the seed layer. The semiconductor structure includes a III-nitride light emitting layer disposed between an n-type region and a p-type region, and is grown on the seed layer.
摘要:
A method according to embodiments of the invention includes providing a substrate comprising a host and a seed layer bonded to the host. The seed layer comprises a plurality of regions. A semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region is grown on the substrate. A top surface of a semiconductor layer grown on the seed layer has a lateral extent greater than each of the plurality of seed layer regions.
摘要:
A substrate including a host and a seed layer bonded to the host is provided, then a semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region is grown on the seed layer. In some embodiments, a bonding layer bonds the host to the seed layer. The seed layer may be thinner than a critical thickness for relaxation of strain in the semiconductor structure, such that strain in the semiconductor structure is relieved by dislocations formed in the seed layer, or by gliding between the seed layer and the bonding layer an interface between the two layers. In some embodiments, the host may be separated from the semiconductor structure and seed layer by etching away the bonding layer.