Abstract:
The yield of a manufacturing process of a semiconductor device is increased. The mass productivity of a semiconductor device is increased. A semiconductor device is manufactured by forming a first material layer over a substrate; forming a second material layer over the first material layer; and separating the first material layer and the second material layer from each other; and heating the first material layer and the second material layer that are stacked before the separation. The first material layer includes a gas containing hydrogen, oxygen, or hydrogen and oxygen (e.g., water) in a metal oxide, for example. The second material layer includes a resin. The first material layer and the second material layer are separated from each other by a break of a hydrogen bond. Specifically water is separated out at the interface or near the interface, and then adhesion is reduced due to the water present.
Abstract:
The yield of a separation process is improved. The mass productivity of a display device which is formed through a separation process is improved. A layer is formed over a substrate with use of a material including a resin or a resin precursor. Next, a resin layer is formed by performing heat treatment on the layer. Next, a layer to be separated is formed over the resin layer. Then, the layer to be separated and the substrate are separated from each other. The heat treatment is performed in an atmosphere containing oxygen or while supplying a gas containing oxygen.
Abstract:
To provide a peeling method that achieves low cost and high mass productivity. The peeling method includes the steps of: forming a first layer with a photosensitive material over a formation substrate; forming a first region and a second region having a smaller thickness than the first region in the first layer by photolithography to form a resin layer having the first region and the second region; forming a transistor including an oxide semiconductor in a channel formation region over the first region in the resin layer; forming a conductive layer over the second region in the resin layer; and irradiating the resin layer with laser light to separate the transistor and the formation substrate.
Abstract:
A yield in the step of bonding two members together is improved. A bonding apparatus includes a stage capable of supporting a first member having a sheet-like shape, a fixing mechanism capable of fixing one end portion of a second member having a sheet-like shape so that the second member overlaps with the first member, and a pressurizing mechanism capable of moving from a side of the one end portion of the second member to a side of the other end portion and spreading a bonding layer under pressure between the first member and the second member. The first member and the second member are bonded to each other.
Abstract:
An apparatus for supplying a support having a clean surface is provided. Alternatively, an apparatus for manufacturing a stack including a support and a remaining portion of a processed member whose one surface layer is separated is provided. A positioning portion, a slit formation portion, and a peeling portion are included. The positioning portion is provided with a first transfer mechanism of a stacked film including a support and a separator and a table for fixing the stacked film. The slit formation portion is provided with a cutter that can form a slit which does not pass through the separator. The peeling portion is provided with a second transfer mechanism and a peeling mechanism extending the separator and then peeling the separator. In addition, a pretreatment portion activating a support surface is included.
Abstract:
A device for forming a separation starting point that allows separation of a surface layer of a processed member to form a remaining portion is provided. A manufacturing device of a stack including a support and a remaining portion of a processed member whose surface layer is separated is provided. The device for forming the separation starting point includes a stage that supports the processed member, a cutter that faces the stage, a head portion that supports the cutter, an arm portion that supports the head portion, and a moving mechanism that relatively moves the cutter to the stage.
Abstract:
One embodiment of the present invention provides a novel display apparatus that is highly convenient or reliable. A plurality of pixel regions (also referred to as display regions) are combined to obtain a display apparatus for components inside a motor vehicle. Specifically, a display with a curved display surface is installed as a vehicle interior of a motor vehicle or the like. A wiring layer is provided in a support body having a curved surface, and the wiring layer and part of a signal line in a pixel region are electrically connected to each other. Moreover, by using a structure in which a plurality of adjacent pixel regions overlap with each other so as to have a small gap therebetween, a joint between the pixel regions is made less noticeable, and preferably invisible.
Abstract:
One embodiment of the present invention provides a novel display apparatus that is highly convenient or reliable. The display apparatus includes a plurality of flexible substrates over each of which a plurality of light-emitting diode chips are mounted, a substrate provided with a nitride film, and a resin between the flexible substrates and the substrate provided with a nitride film. Light emitted from the light-emitting diode chips passes through the substrate provided with a nitride film.
Abstract:
A method for manufacturing a novel display apparatus is provided. The method includes a first step of forming a first electrode, a second electrode, and a first gap over an insulating film, a second step of forming a first film over the second electrode; a third step of forming a first layer overlapping with the first electrode, a fourth step of removing the first film by an etching method to form a first unit overlapping with the first electrode, a fifth step of removing a surface of the second electrode, a sixth step of forming a second film over the first layer and the second electrode, a seventh step of forming a second layer overlapping with the second electrode, and an eighth step of removing the second film by an etching method using the second layer to form a second unit overlapping with the second electrode and a second gap.
Abstract:
The yield of a separation process is improved. The mass productivity of a display device which is formed through a separation process is improved. A layer is formed over a substrate with use of a material including a resin or a resin precursor. Next, a resin layer is formed by performing heat treatment on the layer. Next, a layer to be separated is formed over the resin layer. Then, the layer to be separated and the substrate are separated from each other. The heat treatment is performed in an atmosphere containing oxygen or while supplying a gas containing oxygen.