Abstract:
Methods for high speed, high throughput analysis of polynucleotide sequences, and apparatuses with which to carry out the methods are provided in the invention.
Abstract:
The present methods are exemplified by a process in which maternal blood containing fetal DNA is diluted to a nominal value of approximately 0.5 genome equivalent of DNA per reaction sample. Digital PCR is then be used to detect aneuploidy, such as the trisomy that causes Down Syndrome. Since aneuploidies do not present a mutational change in sequence, and are merely a change in the number of chromosomes, it has not been possible to detect them in a fetus without resorting to invasive techniques such as amniocentesis or chorionic villi sampling. Digital amplification allows the detection of aneuploidy using massively parallel amplification and detection methods, examining, e.g., 10,000 genome equivalents.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
The present invention features methods for analyzing a sequence of a target polynucleotide by detecting incorporation of a nucleotide into its complementary strand, where the polynucleotides may be bound at high density and at single molecule resolution. The invention also features labeling moieties and blocking moieties, which facilitate chain termination or choking. Certain aspects provide for temporal detection of the incorporations; some allow for asynchronous analysis of a plurality of target polynucleotides and the use of short sequencing cycles. Surface chemistry aspects of the sequencing methods are also provided. The method may also be used in kits, said kits designed to carry out and facilitate the methods provided herein.
Abstract:
The invention relates to a microfabricated device and methods of using the device for analyzing and sorting polynucleotide molecules by size.
Abstract:
This invention relates in general to a method for molecular fingerprinting. The method can be used for forensic identification (e.g. DNA fingerprinting, especially by VNTR), bacterial typing, and human/animal pathogen diagnosis. More particularly, molecules such as polynucleotides (e.g. DNA) can be assessed or sorted by size in a microfabricated device that analyzes the polynucleotides according to restriction fragment length polymorphism. In a microfabricated device according to the invention, DNA fragments or other molecules can be rapidly and accurately typed using relatively small samples, by measuring for example the signal of an optically-detectable (e.g., fluorescent) reporter associated with the polynucleotide fragments.
Abstract:
A microlens structure such as a solid immersion lens structure is a radiation transmissive pliant elastomer cast to a desired shape and smoothness. A method for construction of a solid immersion lens structure includes providing a mold defining a lens shaped cavity in which a solid immersion lens is cast, casting a translucent liquid elastomeric material into the lens cavity, permitting the elastomeric material to set to form the solid immersion lens portion and removing the solid immersion lens portion from the mold. A specific material for use as the solid immersion lens is a translucent silicone elastomer of a refractive index greater than n=1.4, such as General Electric RTV 615.
Abstract:
Methods for high speed, high throughput analysis of polynucleotide sequences, and apparatuses with which to carry out the methods are provided in the invention.
Abstract:
The invention relates to a microfabricated device and methods of using the device for analyzing and sorting individual polynucleotides, e.g., by size according to an optical signal measured within a detection region of the device. An optical signal such as fluorescence from a reporter molecule associated with the polynucleotide molecules can be used to determine polynucleotide size or to direct selected polynucleotides into one or more selected branch channels of the device.
Abstract:
The present invention features methods for analyzing a sequence of a target polynucleotide by detecting incorporation of a nucleotide into its complementary strand, where the polynucleotides may be bound at high density and at single molecule resolution. The invention also features labeling moieties and blocking moieties, which facilitate chain termination or choking. Certain aspects provide for temporal detection of the incorporations; some allow for asynchronous analysis of a plurality of target polynucleotides and the use of short sequencing cycles. Surface chemistry aspects of the sequencing methods are also provided. The method may also be used in kits, said kits designed to carry out and facilitate the methods provided herein.