摘要:
An integrated circuit structure and methods for forming the same are provided. The integrated circuit structure includes a substrate; a through-silicon via (TSV) extending into the substrate; a TSV pad spaced apart from the TSV; and a metal line over, and electrically connecting, the TSV and the TSV pad.
摘要:
A conductive pillar structure for a die includes a passivation layer having a metal contact opening over a substrate. A bond pad has a first portion inside the metal contact opening and a second portion overlying the passivation layer. The second portion of the bond pad has a first width. A buffer layer over the bond pad has a pillar contact opening with a second width to expose a portion of the bond pad. A conductive pillar has a first portion inside the pillar contact opening and a second portion over the buffer layer. The second portion of the conductive pillar has a third width. A ratio of the second width to the first width is between about 0.35 and about 0.65. A ratio of the second width to the third width is between about 0.35 and about 0.65.
摘要:
A method of forming an integrated circuit structure is provided. The method includes forming a metal pad at a major surface of a semiconductor chip, forming an under-bump metallurgy (UBM) over the metal pad such that the UBM and the metal pad are in contact, forming a dummy pattern at a same level as the metal pad, the dummy pattern formed of a same metallic material as the metal pad and electrically disconnected from the metal pad, and forming a metal bump over the UBM such that the metal bump is electrically connected to the UBM and no metal bump in the semiconductor chip is formed over the dummy pattern.
摘要:
A method of forming an integrated circuit structure is provided. The method includes forming a metal pad at a major surface of a semiconductor chip, forming an under-bump metallurgy (UBM) over the metal pad such that the UBM and the metal pad are in contact, forming a dummy pattern at a same level as the metal pad, the dummy pattern formed of a same metallic material as the metal pad and electrically disconnected from the metal pad, and forming a metal bump over the UBM such that the metal bump is electrically connected to the UBM and no metal bump in the semiconductor chip is formed over the dummy pattern.
摘要:
A semiconductor device having one or more through-silicon vias (TSVs) is provided. The TSVs are formed such that sidewalls of the TSVs have a scalloped surface. In an embodiment, the sidewalls of the TSVs are sloped wherein a top and bottom of the TSVs have different dimensions. The TSVs may have a V-shape wherein the TSVs have a wider dimension on a circuit side of the substrate, or an inverted V-shape wherein the TSVs have a wider dimension on a backside of the substrate. The scalloped surfaces of the sidewalls and/or sloped sidewalls allow the TSVs to be more easily filled with a conductive material such as copper.
摘要:
A semiconductor die package is provided. The semiconductor die package includes a plurality of dies arranged in a stacked configuration. Through-silicon vias are formed in the lower or intermediate dies to allow electrical connections to dies stacked above. The lower die is positioned face up and has redistribution lines electrically coupling underlying semiconductor components to the through-silicon vias. The dies stacked above the lower die may be oriented face up such that the contact pads are facing away from the lower die or flipped such that the contact pads are facing the lower die. The stacked dies may be electrically coupled to the redistribution lines via wire bonding or solder balls. Additionally, the lower die may have another set of redistribution lines on an opposing side from the stacked dies to reroute the vias to a different pin-out configuration.
摘要:
A method of fabricating a semiconductor device including providing a substrate having a front surface and a back surface. A masking element is formed on the front surface of the substrate. The masking element includes a first layer having a first opening and a second layer having a second opening of a greater width than the first opening. The second opening is a tapered opening. The method further includes etching a tapered profile via extending from the front surface to the back surface of the substrate using the formed masking element.
摘要:
A method of fabricating a semiconductor device including providing a substrate having a front surface and a back surface. A masking element is formed on the front surface of the substrate. The masking element includes a first layer having a first opening and a second layer having a second opening of a greater width than the first opening. The second opening is a tapered opening. The method further includes etching a tapered profile via extending from the front surface to the back surface of the substrate using the formed masking element.
摘要:
A semiconductor device including a substrate having a front surface and a back surface is provided. A plurality of interconnect layers are formed on the front surface and have a first surface opposite the front surface of the substrate. A tapered profile via extends from the first surface of the plurality of interconnect layers to the back surface of the substrate. In one embodiment, a insulating layer is formed on the substrate and includes an opening, and wherein the opening includes conductive material providing contact to the tapered profile via.
摘要:
A semiconductor device including a substrate having a front surface and a back surface is provided. A plurality of interconnect layers are formed on the front surface and have a first surface opposite the front surface of the substrate. A tapered profile via extends from the first surface of the plurality of interconnect layers to the back surface of the substrate. In one embodiment, a insulating layer is formed on the substrate and includes an opening, and wherein the opening includes conductive material providing contact to the tapered profile via.