Abstract:
An energy recovery device including: at least one capacitor with variable capacitance, the capacitor including a fixed electrode, a dielectric layer, and a liquid electrode; and a mechanism to inject an electric charge into the capacitor and to remove the electric charge therefrom, including a charge injection electrode forming a portion of the second face positioned upstream from the fixed electrode in the direction of displacement of the liquid electrode, and a charge removal electrode forming a portion of the second face positioned downstream from the fixed electrode in the direction of displacement of the liquid electrode.
Abstract:
A hydrophobic surface coating, preferably obtained by chemical vapor deposition, comprises at least an upper thin layer formed by a compound selected from the group consisting of SiCxOy:H with x comprised between 1.4 and 2 and y comprised between 0.8 and 1.4 and SiCx′Ny′:H with x′ comprised between 1.2 and 1.4 and y′ comprised between 0.6 and 0.8, so as to obtain a free surface with a low wetting hysteresis. Such a hydrophobic surface coating can be arranged on the free surface of a microcomponent comprising at least one substrate provided with, an electrode array and particularly suitable for moving drops of liquid by electrowetting on dielectric.
Abstract translation:优选通过化学气相沉积获得的疏水性表面涂层至少包含由选自由SiC x O y:H组成的组中的化合物形成的上部薄层,x包含在1.4和2之间,y包含在0.8和1.4之间,而SiC x N ':H,x'在1.2和1.4之间,y'在0.6和0.8之间,以获得具有低润湿滞后的自由表面。 这样的疏水表面涂层可以布置在微组件的自由表面上,该微组件包括至少一个设置有电极阵列的基底,并且特别适用于通过电介质上的电润湿来移动液滴。
Abstract:
The invention relates to a microfluidic device for making a liquid/liquid or gas biphasic system using a first liquid or a gas and a second liquid, non-miscible with each other, the device having a first hydrophobic surface for the second liquid, the first liquid forming a layer (6) on said first hydrophobic surface. The device comprises means for introducing a drop (7) of the second liquid into the layer of first liquid or gas and in contact with said first hydrophobic surface, and means for displacing the drop on said first hydrophobic surface along a determined path, the device having on the path of the drop, at least one wetting defect causing, upon passing of the drop over this defect, failure of the triple line of contact of the drop on the first hydrophobic surface and inclusion of first liquid (8) or gas into the drop.The invention also relates to the associated method.
Abstract:
Devices and methods for carrying out a chemical or biochemical protocol are disclosed. In one embodiment, the chemical or biochemical protocol is performed by cycling at least one thermal transfer member between at least two temperatures while liquid samples on which the chemical or biochemical protocol is to be performed are continuously moving through at least one temperature regulated zone upon which the at least one thermal transfer member acts. In some embodiments, the device comprises a sample transport member that comprises liquid samples in sample receiving regions. The sample transport member moves the samples continuously through a temperature regulated zone which cycles between at least two temperatures while the liquid samples are moving through a temperature regulated zone on which at least one thermal transfer member acts. In some embodiments, the sample receiving regions comprise wells, hydrophillic films or hydrophillic filaments.
Abstract:
The invention involves a microsystem which can be used in particular for making microswitches or microvalves, composed of a substrate (50) and used for shifting between a first state of functioning and a second state of functioning by means of a bimetal-effect thermal sensor. The sensor includes a deformable element (51) attached, at opposite ends, to the substrate (50) so that there is a natural deflection without stress with respect to a surface of the substrate opposite it, this natural deflection determining the first state of functioning, the second state of functioning being caused by the thermal sensor which, under the influence of temperature variation, induces a deformation of the deformable element (51) which diminishes the deflection by subjecting it to a compressive force which shifts it in a direction opposite to its natural deflection by buckling.
Abstract:
Chemical and/or biological analysis device comprising an analysis support (100) with at least one input bowl (102) to contain a sample, at least one output bowl (104) to output the said sample, at least one internal duct (108) passing through the support to form a connection between the input bowl and the output bowl, and at least one reagent reservoir (120a, 120b, 120c) connected to each duct (108) between the input bowl and the output bowl, in which the input bowl, the output bowl and the reservoir open up onto a first face (106) of the analysis support.
Abstract:
The invention relates to a method for determining an analyte in a solution. This method includes the following steps: a) fixing and immobilizing said analyte, for example via the presence of a ligand L, on the inner surface of a conduit (3) having a reduced cross section over all or part (9) of it, and b) determining the variation in load loss of a fluid circulating inside the conduit, due to the analyte P which has been fixed and immobilized at least in the reduced cross section part (9) of said conduit during step a).
Abstract:
A device for extracting a liquid phase from a suspension, the device being characterized in that it comprises: a main duct for conveying a flow of said suspension, the duct being of a length that is sufficient to enable a layer of said suspension to develop that is depleted in solid phase; flow disturbance means for disturbing the flow of said suspension, said means being provided in the main duct and being adapted to cause at least one recirculation vortex to form so as to increase locally the thickness of said depleted layer; and liquid extraction means disposed in a region of the device where said suspension is enriched in liquid phase as a result of said recirculation vortex.A method of extracting a liquid phase from a suspension, the method comprising injecting said suspension into such a device at a flow rate suitable for causing at least one recirculation vortex to be formed, and extracting a fraction of said suspension that is enriched in liquid as a result of said vortex.
Abstract:
An energy recovery device including: at least one capacitor with variable capacitance, the capacitor including a fixed electrode, a dielectric layer, and a liquid electrode; and a mechanism to inject an electric charge into the capacitor and to remove the electric charge therefrom, including a charge injection electrode forming a portion of the second face positioned upstream from the fixed electrode in the direction of displacement of the liquid electrode, and a charge removal electrode forming a portion of the second face positioned downstream from the fixed electrode in the direction of displacement of the liquid electrode.
Abstract:
A microfluidic device, including a microfluidic network, including: a) two parallel plates each including one or more electrodes, b) at least one channel, arranged between the two plates, made from a material obtained by solidification or hardening of a material of a first fluid, and c) a mechanism varying a physical parameter of the material constituting walls of the channel so as to cause the material to pass at least from the liquid state to the solid state.