Abstract:
Embodiments of the present disclosure provide for nanoparticles, methods of making nanoparticles, methods of using the nanoparticles, and the like. Nanoparticles of the present disclosure can have a variety of morphologies, which may lead to their use in a variety of technologies and processes. Nanoparticles of the present may be used in sensors, optics, mechanics, circuits, and the like. In addition, nanoparticles of the present disclosure may be used in catalytic reactions, for CO oxidation, as super-capacitors, in hydrogen storage, and the like.
Abstract:
The invention provides a catalyst composition, including a mixture of catalytically active particles and a magnetic material, such as superparamagnetic iron oxide nanoparticles, capable of inductive heating in response to an applied alternating electromagnetic field. The catalytically active particles will typically include a base metal, platinum group metal, oxide of base metal or platinum group metal, or combination thereof, and will be adapted for use in various catalytic systems, such as diesel oxidation catalysts, catalyzed soot filters, lean NOx traps, selective catalytic reduction catalysts, ammonia oxidation catalysts, or three-way catalysts. The invention also includes a system and method for heating a catalyst material, which includes a catalyst article that includes the catalyst composition and a conductor for receiving current and generating an alternating electromagnetic field in response thereto, the conductor positioned such that the generated alternating electromagnetic field is applied to at least a portion of the magnetic material.
Abstract:
The present disclosure relates to a process for producing a finely divided metal-doped aluminogallate nanocomposite comprising mixing a carrier solvent with a bulk metal-doped aluminogallate nanocomposite to form a bulk metal-doped aluminogallate slurry and atomizing the bulk metal-doped aluminogallate slurry using a low temperature collision to produce a finely divided metal-doped aluminogallate nanocomposite, the composition of a nickel-doped aluminogallate nanocomposite (GAN), and a method of NO decomposition using the nickel-doped aluminogallate nanocomposite.
Abstract:
The present disclosure relates to a process for producing a finely divided metal-doped aluminogallate nanocomposite comprising mixing a carrier solvent with a bulk metal-doped aluminogallate nanocomposite to form a bulk metal-doped aluminogallate slurry and atomizing the bulk metal-doped aluminogallate slurry using a low temperature collision to produce a finely divided metal-doped aluminogallate nanocomposite, the composition of a nickel-doped aluminogallate nanocomposite (GAN), and a method of NO decomposition using the nickel-doped aluminogallate nanocomposite.
Abstract:
The present disclosure relates to selecting the layer of applying ZPGM active phase in washcoat, or applying ZPGM active phase in overcoat, for achieving optimized performance and enhanced thermal stability. Applying ZPGM active phase catalyst in overcoat shows improvements compare to applying ZPGM active phase in washcoat. The selected active phase material may include a chemical composition that is substantially free from PGM, including a formulation of stoichiometric Cu—Mn spinel structure active phase deposited on Niobium-Zirconium support oxide. The selected active phase layer applied in overcoat may include a washcoat of alumina coated on a suitable ceramic substrate. The disclosed active phase may be applied in overcoat to maximize efficiency of catalyst systems, which may exhibit enhanced catalytic activity properties, which may stable after aging and under steady state and oscillating condition, showing optimized performance purifying gases in TWC condition.
Abstract:
A catalyst comprising a zeolite loaded with copper ions and at least one trivalent metal ion other than Al+3, wherein the catalyst decreases NOx emissions in diesel exhaust. The trivalent metal ions are selected from, for example, trivalent transition metal ions, trivalent main group metal ions, and/or trivalent lanthanide metal ions. In particular embodiments, the catalysts are selected from Cu—Fe-ZSM5, Cu—La-ZSM-5, Fe—Cu—La-ZSM5, Cu—Sc-ZSM-5, and Cu—In-ZSM5. The catalysts are placed on refractory support materials and incorporated into catalytic converters.
Abstract:
Disclosed here are material formulations of use in the conversion of exhaust gases, where the formulations may include Copper (Cu), Cerium (Ce), Tin (Sn), Niobium (Nb), Zirconium (Zr), Calcium (Ca) and combinations thereof.
Abstract:
The present disclosure describes rhodium iron catalysts of use in catalyst systems. Disclosed here are TWCs configured to include a substrate and one or more of a washcoat layer, an impregnation layer, and/or an overcoat layer. Disclosed herein are one or more of a washcoat layer and/or an overcoat layer formed using a slurry that includes one or more of an oxygen storage material, a refractory support oxide, iron, and rhodium. Disclosed herein are methods of preparing catalysts wherein a washcoat layer is deposited onto the substrate, one or more impregnation layers may be deposited onto the washcoat layer, one or more overcoat layers may be deposited onto the impregnation washcoat layer, and one or more additional impregnation layers may be deposited onto the one or more washcoat layers.
Abstract:
The present disclosure describes zoned three way catalyst (TWC) systems including Rhodium-iron overcoat layers and Nb—Zr—Al Oxide overcoat layers. Disclosed herein are TWC sample systems that are configured to include a substrate and one or more of a washcoat layer, an impregnation layer, and/or an overcoat layer. In catalyst systems disclosed herein, closed-coupled catalysts include a first catalyst zone with an overcoat layer formed using a slurry that includes an oxide mixture and an Oxygen Storage Material (OSM). In catalyst systems disclosed herein, oxide mixtures include niobium oxide (Nb2O5), zirconia, and alumina. Further, catalyst systems disclosed herein include a second catalyst zone with an overcoat layer formed to include a rhodium-iron catalyst. Yet further, catalyst systems disclosed herein include impregnation layers that include one or more of Palladium, Barium, Cerium, Neodymium, and Rhodium.