摘要:
The invention relates to boron nitride agglomerates, comprising lamellar, hexagonal boron nitride primary particles, which are agglomerated with one another with a preferred orientation, the agglomerates formed being flake-shaped.The invention also relates to a method for producing said boron nitride agglomerates, characterized in that lamellar, hexagonal boron nitride primary particles are agglomerated in such a way that they line up with one another with a preferred orientation.The flake-shaped agglomerates according to the invention are suitable as filler for polymers for making polymer-boron nitride composites and for hot pressing of boron nitride sintered compacts.
摘要:
The invention relates to boron nitride agglomerates, comprising lamellar, hexagonal boron nitride primary particles, which are agglomerated with one another with a preferred orientation, the agglomerates formed being flake-shaped.The invention also relates to a method for producing said boron nitride agglomerates, characterized in that lamellar, hexagonal boron nitride primary particles are agglomerated in such a way that they line up with one another with a preferred orientation.The flake-shaped agglomerates according to the invention are suitable as filler for polymers for making polymer-boron nitride composites and for hot pressing of boron nitride sintered compacts.
摘要:
Shape memory and pseudoelastic martensitic behavior is enabled by a structure in which there is provided a crystalline ceramic material that is capable of undergoing a reversible martensitic transformation and forming martensitic domains, during such martensitic transformation, that have an elongated domain length. The ceramic material is configured as a ceramic material structure including a structural feature that is smaller than the elongated domain length of the ceramic material.
摘要:
An insulation sheet made from silicon nitride comprising: a sheet-shaped silicon-nitride substrate which contains β-silicon-nitride crystal grains as a main phase; and a surface layer which is formed on one face or both front and back faces of surfaces of the silicon-nitride substrate and is formed from a resin or a metal which includes at least one element selected from among In, Sn, Al, Ag, Au, Cu, Ni, Pb, Pd, Sr, Ce, Fe, Nb, Ta, V and Ti. A semiconductor module structure using the insulation sheet made from silicon nitride.
摘要:
An insulation sheet made from silicon nitride comprising: a sheet-shaped silicon-nitride substrate which contains β-silicon-nitride crystal grains as a main phase; and a surface layer which is formed on one face or both front and back faces of surfaces of the silicon-nitride substrate and is formed from a resin or a metal which includes at least one element selected from among In, Sn, Al, Ag, Au, Cu, Ni, Pb, Pd, Sr, Ce, Fe, Nb, Ta, V and Ti. A semiconductor module structure using the insulation sheet made from silicon nitride.
摘要:
Provided is a zinc oxide sputtering target, which can effectively suppress the occurrence of break or crack in the target during sputtering to enable production of a zinc oxide transparent conductive film with high productivity. The zinc oxide sputtering target is composed of a zinc oxide sintered body comprising zinc oxide crystal grains, wherein the zinc oxide sputtering target has a sputter surface having a (100) crystal orientation degree of 50% or more.
摘要:
A silicon nitride substrate including a phase encompassed of silicon nitride particles, and intergranular phase formed from a sintering aid, wherein a separation layer is formed on the surface of a molded body including silicon nitride powder, sintering aid powder, and organic binder, by using a boron nitride paste containing boron nitride powder, organic binder, and organic solvent; the separation layer and molded body are heated; the organic binder is removed from the separation layer and molded body; subsequently molded bodies stacked with a separation layer therebetween, are sintered. Boron nitride paste contains 0.01 to 0.50% by oxygen mass and 0.001 to 0.5% by carbon mass, and c/a is within range of 0.02 to 10.00, where c is oxygen content in the powder of the boron nitride paste, and a carbon content in the degreased separation layer, which includes 0.2 to 3.5 mg/cm2 of hexagonal boron nitride powder.
摘要:
A method for producing a sintered ferrite magnet having an M-type ferrite structure and represented by: Ca1−x−yRxBayFe2n-zCoz, (by atomic ratio), where 0.3≦1−x−y≦0.65, 0.2≦x≦0.65, 0.001≦y≦0.2, 0.03≦z≦0.65, 4≦n≦7, and 1−x−y>y. The method includes mixing a Ca compound, an R element compound, a Ba compound, an iron compound and a Co compound as starting materials; calcining the starting materials to obtain calcined bodies; pulverizing the calcined bodies to obtain a calcined powder; providing recycled materials having an M-type ferrite structure and being represented by the above formula; pulverizing the recycled materials to obtain a recycled material powder; mixing the recycled material powder with the calcined powder to form a moldable material; molding the moldable material to obtain green bodies; and sintering the green bodies to obtain the sintered ferrite magnet.
摘要翻译:一种具有M型铁氧体结构的烧结铁氧体磁体的制造方法,其特征在于,以Ca1-x-yRxBayFe2n-zCoz(原子比)表示,其中0.3≤1-xy≤0.65,0.2≤x≤0.65,0.001 @ y@0.2,0.03 @ z @ 0.65,4 @ n @ 7和1-xy> y。 该方法包括混合Ca化合物,R元素化合物,Ba化合物,铁化合物和Co化合物作为起始材料; 煅烧原料以获得煅烧体; 粉碎煅烧体以获得煅烧粉末; 提供具有M型铁氧体结构并由上式表示的再循环材料; 粉碎回收材料以获得再生材料粉末; 将再生材料粉末与煅烧粉末混合以形成可模制材料; 模制可模制材料以获得生坯体; 并烧结生坯以获得烧结的铁氧体磁体。
摘要:
A composite article having a body including a first phase that includes a nitride material, a second phase that includes a carbide material, and a third phase having one of an amorphous phase material with a nitrogen content of at least about 1.6 wt % or an amorphous phase material comprising carbon.
摘要:
Disclosed are a silicon carbide sintered body and a sliding component using the same, and a protective body which, even when fine cracks are generated due to thermal shock or mechanical impact over prolonged use, are capable of inhibiting development of the cracks. The silicon carbide sintered body contains silicon carbide grains as a major component and has a relative density of 95% or more. On an observation surface of the silicon carbide sintered body, coarse silicon carbide grains 1b having a surface area of 170 μm2 or more occupy 6 area % or more and 15 area % or less. The silicon carbide sintered body has excellent mechanical properties such as strength and rigidity. Even when fine cracks are generated due to thermal shock or mechanical impact, coarse silicon carbide grains 1b are capable of inhibiting development of the cracks.