Abstract:
A solid surface is processed while corner portions of a relief structure are protected from deformation. A method of processing a solid surface with a gas cluster ion beam includes a cluster protection layer formation step of forming, on the solid surface, a relief structure having protrusions with a cluster protection layer formed to cover an upper part thereof and recesses without the cluster protection layer; an irradiation step of emitting a gas cluster ion beam onto the solid surface having the relief structure formed in the cluster protection layer formation step; and a removal step of removing the cluster protection layer. A thickness T of the cluster protection layer satisfies T > nY + ( b 2 Y 2 n - nY 2 ( b 4 - 16 a 2 ) 1 2 2 ) 1 2 , where n is a dose of the gas cluster ion beam, and Y is an etching efficiency of the cluster protection layer, expressed as an etching volume per cluster (a and b are constants).
Abstract translation:处理浮雕结构的角部以防止变形的实心表面。 用气体簇离子束处理固体表面的方法包括:簇保护层形成步骤,在固体表面上形成具有突起的浮雕结构,所述突起具有形成为覆盖其上部的簇保护层和没有簇的凹部 保护层; 在所述簇保护层形成工序中形成有具有所述浮雕结构的固体表面上的气体簇离子束的照射工序; 以及去除簇保护层的去除步骤。 簇保护层的厚度T满足T> nY +(b 2 y 2 n n n 2(b 4 - 16 a a 2)1 2 2)1 2,其中n是气体簇的剂量 离子束,Y是簇保护层的蚀刻效率,表示为每簇的蚀刻体积(a和b是常数)。
Abstract:
A method for depositing material on a substrate is described. The method comprises maintaining a reduced-pressure environment around a substrate holder for holding a substrate having a surface, and holding the substrate securely within the reduced-pressure environment. Additionally, the method comprises forming a gas cluster ion beam (GCIB) from a pressurized gas comprising a compound having silicon (Si) and carbon (C), accelerating the GCIB to the reduced-pressure environment, and irradiating the accelerated GCIB onto at least a portion of the surface of the substrate to form a thin film containing silicon and carbon, wherein the carbon content is greater than or equal to about 10%. Further the compound may possess a Si—C bond.
Abstract:
Embodiments of an apparatus and methods for correcting systematic non-uniformities using a gas cluster ion beam are generally described herein. Other embodiments may be described and claimed.
Abstract:
A multi-layer drug coated medical device such as for example an expandable vascular drug eluting stent is formed by vacuum pulse spray techniques wherein each layer is irradiated to improve adhesion and/or drug elution properties prior to formation of subsequent layers. Layers may be homogeneous or of diverse drugs. Layers may incorporate a non-polymer elution-retarding material. Layers may alternate with one or more layers of non-polymer elution-retarding materials. Polymer binders and/or matrices are not used in the formation of the coatings, yet the pure drug coatings have good mechanical and elution rate properties. Systems, methods and medical device articles are disclosed.
Abstract:
A method and device for adjusting a beam property, such as a beam size, a beam shape or a beam divergence angle, in a gas cluster beam prior to ionization of the gas cluster beam is described. A gas cluster ion beam (GCIB) source is provided, comprising a nozzle assembly having a gas source, a stagnation chamber and a nozzle that is configured to introduce under high pressure one or more gases through the nozzle to a vacuum vessel in order to produce a gas cluster beam. Additionally, the GCIB source comprises a gas skimmer positioned downstream from the nozzle assembly that is configured to reduce the number of energetic, smaller particles in the gas cluster beam. Furthermore, the GCIB source comprises a beam adjustment device positioned downstream from the gas skimmer that is configured to adjust at least one beam property of the gas cluster beam, and an ionizer positioned downstream from the beam adjustment device that is configured to ionize the gas cluster beam to produce a GCIB.
Abstract:
A method and system of location specific processing on a substrate is described. The method comprises acquiring metrology data for a substrate, and computing correction data for adjusting a first region of the metrology data on the substrate. Thereafter, a first gas cluster ion beam (GCIB) for treating the high gradient regions is established, and the first GCIB is applied to the substrate according to the correction data. The method further comprises optionally acquiring second metrology data following the applying of the first GCIB, and computing second correction data for adjusting a second region of the metrology data, or the second metrology data, or both on the substrate. Thereafter, a second gas cluster ion beam (GCIB) for treating the second region is established, and the second GCIB is applied to the substrate according to the second correction data.
Abstract:
The invention comprises a two-step process for achieving an ultra-polish finish on materials such as gemstones and the like by first performing a chemical-mechanical polishing of the material using an intermetallic material as the grinding medium followed by a gas cluster ion beam (GCIB) treatment. The intermetallic grinding wheel is formed of carbide-forming metals in the form of intermetallics consisting of one kind or more of elements selected from the group of Al, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Os, Ir and Pt, and one kind or more of elements selected from the group of Ti, V, Zr, Nb, Mo, Hf, Ta and W. The gas cluster ion beams are comprised of gas clusters having nano-sized aggregates of materials that are gaseous under conditions of standard temperature and pressure. Such clusters can be ionized by electron bombardment or other means, permitting the gas clusters to be formed into directed beams of known and controllable energy. The larger sized gas clusters are the most useful because the larger sized gas clusters are able to carry substantial energy per cluster ion, while yet having only modest energy per atom or molecule.
Abstract:
Embodiments of an apparatus and methods for offsetting systematic non-uniformities using a gas cluster ion beam are generally described herein. Other embodiments may be described and claimed.
Abstract:
Embodiments of a gas cluster ion beam apparatus and methods for forming a gas cluster ion beam using a low-pressure process source are generally described herein. In one embodiment, the low-pressure process source is mixed with a high-pressure diluent source in a static pump to form a mixed source, from which a gas cluster jet is generated and ionized to form the gas cluster ion beam. Other embodiments may be described and claimed.
Abstract:
Method of forming one or more doped regions in a semiconductor substrate and semiconductor junctions formed thereby, using gas cluster ion beams.