Abstract:
An electro-optical (EO) radiation collector for collecting and/or transmitting EO radiation (which may include EO radiation in the visible wavelengths) for transmission to an EO sensor. The EO radiation collector may be used with an arc flash detection device or other protective system, such as an intelligent electronic device (IED). The arc flash detection device may detect an arc flash event based upon EO radiation collected by and/or transmitted from the EO radiation collector. The EO radiation collector may receive an EO conductor cable, an end of which may be configured to receive EO radiation. A portion of the EO radiation received by the EO radiation collector may be transmitted into the EO conductor cable and transmitted to the arc flash detection device. The EO radiation collector may be adapted to receive a second EO conductor cable, which may be used to provide redundant EO transmission and/or self-test capabilities.
Abstract:
A multi-gap inductor core includes magnetic lamination sheets made of magnetic core material arranged in a stack, and fixing layers made of a fixing material. Each fixing layer is arranged between a corresponding pair of adjacent magnetic lamination sheets. Each fixing layer also includes an embedded mechanical spacer that defines a gap having a predetermined thickness between a corresponding pair of adjacent magnetic lamination sheets.
Abstract:
Disclosed is monolayer and/or few-layer graphene on metal or metal-coated substrates. Embodiments include graphene mirrors. In an example, a mirror includes a substrate that has a surface exhibiting a curvature operable to focus an incident beam onto a focal plane. A graphene layer conformally adheres to the substrate, and is operable to protect the substrate surface from degradation due to the incident beam and an ambient environment.
Abstract:
The disclosure relates to an image capture device comprising an electron receiving construct and an electron emitting construct, and further comprising an inner gap providing an unobstructed space between the electron emitting construct and the electron receiving construct. The disclosure further relates to an x-ray emitting device comprising an x-ray emitting construct and an electron emitting construct, said x-ray emitting construct comprising an anode, the anode being an x-ray target, wherein the x-ray emitting device may comprise an inner gap providing an unobstructed space between the electron emitting construct and the x-ray emitting construct. The disclosure further relates to an x-ray imaging system comprising an image capture device and an x-ray emitting device.
Abstract:
An ion beam system comprises a voltage supply system 7 and at least one beam deflector 39 having a plurality of first defection electrodes 51a, 51b, 51c and a plurality of second deflection electrodes 52a, 52b, 52c wherein the voltage supply system is configured to supply different adjustable deflection voltages to the plurality of second deflection electrodes such that electric deflection fields between the plurality of second deflection electrodes and the plurality of opposite first deflection electrodes have a common orientation. The ion beam system has a high kinetic energy mode in which a distribution of the electric deflection fields has a greater width, and a low kinetic energy mode in which a distribution of the electric deflection fields has a smaller width.
Abstract:
The present invention relates to a method and apparatus for varying the cross-sectional shape of an ion beam, as the ion beam is scanned over the surface of a workpiece, to generate a time-averaged ion beam having an improved ion beam current profile uniformity. In one embodiment, the cross-sectional shape of an ion beam is varied as the ion beam moves across the surface of the workpiece. The different cross-sectional shapes of the ion beam respectively have different beam profiles (e.g., having peaks at different locations along the beam profile), so that rapidly changing the cross-sectional shape of the ion beam results in a smoothing of the beam current profile (e.g., reduction of peaks associated with individual beam profiles) that the workpiece is exposed to. The resulting smoothed beam current profile provides for improved uniformity of the beam current and improved workpiece dose uniformity.
Abstract:
Provided is a field emission X-ray tube. The field emission X-ray tube includes a cathode electrode provided on one end of a vacuum container, including a field emission emitter; a gate electrode provided inside the vacuum container to be adjacent to the cathode electrode, including a first opening; a focusing electrode electrically connected to the gate electrode and provided on one surface of the gate electrode to be farther from the cathode electrode than the gate electrode while including a second opening with a greater width than that of the first opening; and an anode electrode provided inside the vacuum container on another end thereof in a direction where the vacuum container is extended. A height of the focusing electrode is identical to the width of the second opening, and wherein the width of the first opening is ⅓ or less of the second opening.
Abstract:
Systems and methods are provided to perform efficient, automatic cyclotron initialization, calibration, and beam adjustment. A process is provided that allows the automation of the initialization of a cyclotron after overnight or maintenance imposed shutdown. In one embodiment, five independent cyclotron system states are defined and the transition between one state to another may be automated, e.g., by the control system of the cyclotron. According to these embodiments, it is thereby possible to achieve beam operation after shutdown with minimal manual input. By applying an automatic procedure, all active devices of the cyclotron (e.g., RF system, extraction deflectors, ion source) are respectively ramped to predefined parameters.
Abstract:
Ion guides for use in mass spectrometry (MS) systems are described. The ion guides are configured to provide a reflective electrodynamic field and a direct current (DC or static) electric field to provide ion beams that are more spatially confined with a comparatively large mass range.
Abstract:
Systems and methods are provided to perform efficient, automatic cyclotron initialization, calibration, and beam adjustment. A process is provided that allows the automation of the initialization of a cyclotron after overnight or maintenance imposed shutdown. In one embodiment, five independent cyclotron system states are defined and the transition between one state to another may be automated, e.g., by the control system of the cyclotron. According to these embodiments, it is thereby possible to achieve beam operation after shutdown with minimal manual input. By applying an automatic procedure, all active devices of the cyclotron (e.g., RF system, extraction deflectors, ion source) are respectively ramped to predefined parameters.