Method for producing ZnTe system compound semiconductor single crystal, ZnTe system compound semiconductor single crystal, and semiconductor device
    35.
    发明申请
    Method for producing ZnTe system compound semiconductor single crystal, ZnTe system compound semiconductor single crystal, and semiconductor device 失效
    制备ZnTe系化合物半导体单晶,ZnTe系化合物半导体单晶及半导体器件的方法

    公开(公告)号:US20080090390A1

    公开(公告)日:2008-04-17

    申请号:US11984944

    申请日:2007-11-26

    Abstract: The present invention relates to a method for producing an n-type ZnTe system compound semiconductor single crystal having high carrier concentration and low resistivity, the ZnTe system compound semiconductor single crystal, and a semiconductor device produced by using the ZnTe system compound semiconductor as a base member. Concretely, a first dopant and a second dopant are co-doped into the ZnTe system compound semiconductor single crystal so that the number of atoms of the second dopant becomes smaller than the number of atoms of the first dopant, the first dopant being for controlling a conductivity type of the ZnTe system compound semiconductor to a first conductivity type, and the second dopant being for controlling the conductivity type to a second conductivity type different from the first conductivity type. By the present invention, a desired carrier concentration can be achieved with a doping amount smaller than in earlier technology, and crystallinity of the obtained crystal can be improved.

    Abstract translation: 本发明涉及一种具有高载流子浓度和低电阻率的n型ZnTe系化合物半导体单晶的制造方法,ZnTe系化合物半导体单晶以及使用ZnTe系化合物半导体作为基底制造的半导体装置 会员。 具体地,第一掺杂剂和第二掺杂剂共掺杂到ZnTe系化合物半导体单晶中,使得第二掺杂剂的原子数小于第一掺杂剂的原子数,第一掺杂剂用于控制 ZnTe系化合物半导体的导电类型为第一导电类型,第二掺杂剂用于将导电类型控制为不同于第一导电类型的第二导电类型。 通过本发明,可以实现与早期技术相比掺杂量小的期望载流子浓度,并且可以提高所得晶体的结晶度。

    Method for manufacturing ZnTe compound semiconductor single crystal ZnTe compound semiconductor single crystal, and semiconductor device
    37.
    发明授权
    Method for manufacturing ZnTe compound semiconductor single crystal ZnTe compound semiconductor single crystal, and semiconductor device 失效
    制造ZnTe化合物半导体单晶ZnTe化合物半导体单晶的方法及半导体器件

    公开(公告)号:US07358159B2

    公开(公告)日:2008-04-15

    申请号:US10472446

    申请日:2002-03-20

    Abstract: The present invention relates to a method for producing an n-type ZnTe system compound semiconductor single crystal having high carrier concentration and low resistivity, the ZnTe system compound semiconductor single crystal, and a semiconductor device produced by using the ZnTe system compound semiconductor as a base member. Concretely, a first dopant and a second dopant are co-doped into the ZnTe system compound semiconductor single crystal so that the number of atoms of the second dopant becomes smaller than the number of atoms of the first dopant, the first dopant being for controlling a conductivity type of the ZnTe system compound semiconductor to a first conductivity type, and the second dopant being for controlling the conductivity type to a second conductivity type different from the first conductivity type. By the present invention, a desired carrier concentration can be achieved with a doping amount smaller than in earlier technology, and crystallinity of the obtained crystal can be improved.

    Abstract translation: 本发明涉及一种具有高载流子浓度和低电阻率的n型ZnTe系化合物半导体单晶的制造方法,ZnTe系化合物半导体单晶以及使用ZnTe系化合物半导体作为基底制造的半导体装置 会员。 具体地,第一掺杂剂和第二掺杂剂共掺杂到ZnTe系化合物半导体单晶中,使得第二掺杂剂的原子数小于第一掺杂剂的原子数,第一掺杂剂用于控制 ZnTe系化合物半导体的导电类型为第一导电类型,第二掺杂剂用于将导电类型控制为不同于第一导电类型的第二导电类型。 通过本发明,可以实现与早期技术相比掺杂量小的期望载流子浓度,并且可以提高所得晶体的结晶度。

    Mercury cadmium telluride infrared filters and detectors and methods of
fabrication
    39.
    发明授权
    Mercury cadmium telluride infrared filters and detectors and methods of fabrication 失效
    汞碲化镉红外滤光片和检测器及其制造方法

    公开(公告)号:US5861626A

    公开(公告)日:1999-01-19

    申请号:US831170

    申请日:1997-04-02

    Abstract: A multiple film integrated infrared (IR) detector assembly 85 consists of detector films 86, 88, 90 having different IR spectral sensitivities which are deposited on a breadboard IR transmissive but electrically insulating substrate 42. Substrate 42 is deposited on an IR filter layer comprising an HgCdTe film 70. By various techniques described, filter film 70 has a varying composition from edge 68 to 72. This compositional gradient of film 70 results in varying IR spectral absorption as shown by IR transmission graphs 10, 12, 14. Film 70 acts as a graded IR filter in concert with the response of the detector films 86, 88, 90. By the proper choice of the compositional gradients in these films, and as a result the IR spectral response, an integrated IR spectrometer may be fabricated whereby each detector 86, 87, 90 detects only specific narrow bands of IR wavelengths.

    Abstract translation: 多重膜集成红外(IR)检测器组件85由检测器膜86,88,90组成,其具有不同的IR光谱灵敏度,其被沉积在面包板IR透射但电绝缘基底42上。基底42沉积在包括 HgCdTe膜70.通过所描述的各种技术,过滤膜70具有从边缘68至72变化的组成。膜70的组成梯度导致红外光谱吸收变化,如IR透射图10,12,14所示。膜70作为 与检测器膜86,88,90的响应一致的分级红外滤光器。通过适当选择这些膜中的组成梯度,结果可以制造IR光谱响应,可以制造集成的IR光谱仪,由此每个检测器 86,87,90仅检测特定的IR波长的窄带。

    Process for growing HgCdTe base and contact layer in one operation
    40.
    发明授权
    Process for growing HgCdTe base and contact layer in one operation 失效
    在一个操作中生长HgCdTe基底和接触层的方法

    公开(公告)号:US5512511A

    公开(公告)日:1996-04-30

    申请号:US248135

    申请日:1994-05-24

    Abstract: A method for fabricating a two layer epitaxial structure by a liquid phase epitaxy (LPE) process, the structure being comprised of a Group II-VI semiconductor material. The method includes the steps of providing an LPE growth chamber that contains a molten Group II-VI semiconductor material 24, the molten Group II-VI semiconductor material having a first temperature (T.sub.1); growing, at the first temperature, a base layer (22) from the molten Group II-VI semiconductor material, the base layer being grown to have a first bandgap energy; employing a shutter mechanism (30) to isolate the base layer from the molten Group II-VI semiconductor material without removing the base layer from the growth chamber; reducing the first temperature of the molten Group II-VI semiconductor material to a second temperature (T.sub.2); and growing from the same molten Group II-VI semiconductor material a contact layer (32) upon a surface (22a) of the base layer, the contact layer being grown to have a second bandgap energy that is narrower than the first bandgap energy. The base layer is not removed from the growth chamber until after the growth of the contact layer, and is thus not required to be exposed to the atmosphere or to any other sources of contaminates.

    Abstract translation: 一种通过液相外延(LPE)工艺制造双层外延结构的方法,该结构由II-VI族半导体材料组成。 该方法包括以下步骤:提供含有熔融的II-VI族半导体材料24,具有第一温度(T1)的熔融II-VI族半导体材料的LPE生长室; 在第一温度下,从熔融的II-VI族半导体材料生长基底层(22),生长基底层以具有第一带隙能量; 使用快门机构(30)将基底层与熔融的II-VI族半导体材料隔离,而不从生长室移除基底层; 将熔融的II-VI族半导体材料的第一温度降低到第二温度(T2); 并且从相同的熔融的II-VI族半导体材料生长在所述基底层的表面(22a)上的接触层(32),所述接触层被生长以具有比所述第一带隙能量窄的第二带隙能量。 直到接触层生长之后基底层才从生长室中除去,因此不需要暴露于大气或任何其它污染源。

Patent Agency Ranking