Abstract:
A circuit board assembly includes metal plates to be used as conducting medium, an encapsulation enclosing therein the metal plates and provided with holes defined in the encapsulation to allow extension of the metal plates out of the encapsulation for electrical connection and electronic components securely mounted on the encapsulation and electrically connected to the metal plates to form a closed loop.
Abstract:
An electrical component mounting assembly is disclosed for attaching a cylindrical electrical component (C1) such as capacitor, diode, or resistor to a mounting member such as a printed circuit board in a horizontal or vertical orientation. The mounting assembly can have a housing (12) and a sleeve (14) placed around the electrical component which cooperates with the housing to retain the electrical component to the housing. A substantially inner cylindrical wall (32) of the housing can taper inward from an entrance (34) end to a rear wall (18) to form a tapering or narrowing chamber (30). The sleeve can have a slit that runs along the entire length of the sleeve and a tapered outer surface (28) that cooperates with the tapered chamber to clamp or compress against the electrical component as the sleeve is inserted into the housing. The lack of appreciable expansion of the housing creates a tight friction fit to secure the sleeve to the housing. The sleeve can also include a plank that is received in an opening in the housing which can be heat staked to reinforce the friction fit taper lock between the housing and sleeve. The housing can be dimensioned to mount more than one electrical component diameter size by varying the dimensions of the sleeve, and in particular the thickness of sleeve.
Abstract:
A stand-off mounting apparatus includes an insulative carrier for off-board mounting of leaded or surface-mount components, particularly large temperature-sensitive discrete components such as capacitors. The carrier has a component-mounting surface that is elevated relative to the circuit board, and is positioned with respect to the circuit board such that the circuit board area under the mounting surface of the carrier is available for the placement of smaller non-temperature-sensitive components. The off-board components are mounted on the component-mounting surface of the carrier, and the carrier may include support features for providing additional mechanical support for the components. Electrical leads for electrically coupling the elevated components to the circuit board may be insert-molded in the carrier, or may be inserted into plated through-holes in the carrier.
Abstract:
To provide a mounting substrate that requires a reduced amount of solder and reduces a thermal effect of solder on the interior of an electronic component, and a microphone to be mounted on the substrate. A mounting substrate according to the present invention includes: a solder part formed on a part of an electrode formed on the mounting substrate; a resist film formed to prevent the solder of the solder part from flowing out of a predetermined range; and a gas-escape groove that is constituted by the absence of the electrode and the resist film and allows gas produced during soldering to escape.
Abstract:
An electronic apparatus include a housing, a circuit board held in the housing, and large electronic components held in the housing and electrically coupled to the circuit board. The housing has a mounting surface, and the electronic apparatus is mounted to an object at the mounting surface. The large electronic components are arranged in a three-dimensional manner with respect to the mounting surface in such a manner that at least one of the large electronic components overlaps at least one of the large electronic components in a direction toward the mounting surface.
Abstract:
An electronic apparatus has an electronic component and a pin mount. The electronic component has a working surface and two pins protruding from the working surface and each pin being bent to form an L-shape with a proximal part and a distal part. The pin mount has a flat bottom, a rear, two through holes and two communicating recesses. The through holes are defined through the pin mount in parallel, are formed from the front to the rear and receiving the proximal parts of the pins. The communicating recesses are formed in parallel in the front from the through holes toward the bottom of the pin mount, communicate respectively with the through holes and receiving the distal parts of the pins. The pin mount immobilizes the electronic component to prevent the pins from being detached from the electronic component or the PCB to retain the lifetime of the pins.
Abstract:
A process for stabilizing an electrical component having a body and electrical leads projecting from the body and received in through-holes defined in a substrate, while avoiding disadvantages associated with dispensing a hot-melt adhesive during assembly of an electrical package, involves steps of providing a circuit substrate having through-holes for receiving the leads of a leaded electrical component, providing an electrical component having a body and leads extending from the body, positioning a preformed hot-melt adhesive on the circuit substrate or on the electrical component, positioning the electrical component on the circuit substrate so that the leads extend into the through-holes and so that the preformed hot-melt adhesive is positioned between and fills the gap between the body of the electrical component and the substrate, and activating and solidifying the hot-melt adhesive to securely adhere the body of the electrical component to the substrate.
Abstract:
A mounting member has a tube, and a plurality of clamps. The clamps hold the tube or outer portions on both sides of the tube. Therefore, the external load on the mounted part can be minimized while at the same time the mounted part is easily held fixedly on a board such as a printed wiring board.
Abstract:
A printed circuit board with a quartz crystal oscillator includes a mounting area for receiving the quartz crystal oscillator, two first vias, and two second vias. A copper foil is arranged on the mounting area. Pins of the quartz crystal oscillator are inserted into the first vias. The second vias are connected to a ground layer of the PCB and communicate with the copper foil, for transmitting noise of the quartz crystal oscillator to the ground layer of the PCB.
Abstract:
The wide usable interconnecting component of the present invention is capable of reducing number of components or electric elements and reducing number of interconnecting sections without limiting circuit design. The interconnecting component electrically interconnects electric components, and the interconnecting component acts as an electric element. Namely, the interconnecting component acts as a passive element or an active element.