Abstract:
A probe device for use in a tissue inspection system is presented. The probe device comprises a probe body and a control unit at least partially incorporated in the probe body. The probe body carries at least a tissue characterization unit operable for providing sensing data indicative of at least one tissue property at measurement locations in the tissue portion being held by the probe. The control unit comprises: a processor utility for receiving and processing the sensing data and generating measured data indicative of a spatial profile of said at least one tissue property distribution within the tissue portion, and comprises at least one of the following: an imaging utility for receiving said measured data and generating and displaying an image indicative thereof thereby enabling a user to select a region of said tissue portion for further analysis; and a pattern generator module configured for receiving and analyzing said measured data and determining a pattern indicative of an arrangement of regions in said tissue portion, thereby enabling selection of at least one of the regions for further analysis.
Abstract:
A mapping system (200) including: (a) at least one external marker (210,212,214,216) adapted for positioning outside a target (520) to define a target context; (b) at least one target marker (230) adapted for positioning with the target; (c) a data acquisition tool (221) configured to provide position coordinates for at least one data point (220) at the target (520); and (d) a registration module (300) adapted to output position coordinates of said at least one data point relative to at least a portion of the target context.
Abstract:
A device for tissue characterization, comprises a structure; a first mechanism, associated with the structure, configured for exerting a first force on a tissue, for fixing the tissue to the structure, so as to substantially immobilize the tissue; and a second mechanism, associated with the structure, configured for pressing a sensor against an external surface of the immobilized tissue, thereby exerting a second force on the immobilized tissue, wherein at least a component of the first force is in opposition to at least a component of the second force, forcing the immobilized tissue against the sensor, and forcing the sensor against the immobilized tissue, bringing about an effective contact between the sensor and the immobilized tissue.
Abstract:
A measurement device is presented being configured to be connectable to an analyzer unit (including a network analyzer). The measurement device includes a measuring unit and a calibration and control unit connected to and integral with the measuring unit. The calibration and control unit is configured to enable connection of the measuring unit to the analyzer unit. The calibration and control unit includes a number of terminals of known RF reflection coefficients respectively and includes a memory utility carrying recorded data indicative of said RF reflection coefficients and recorded data indicative of RF transfer coefficients of the calibration and control unit. This configuration enables calculation of the RF response of the measuring unit while remaining integral with the calibration and control unit.
Abstract:
A method, apparatus and probe for examining tissue for the presence of target cells, particularly cancerous cells, by subjecting the tissue to be examined to a contrast agent containing small particles of a physical element conjugated with a biological carrier selectively bindable to the target cells. Energy pulses are applied to the examined tissue. The changes in impedance and/or optical characteristics of the examined tissue produced by the applied energy pulses are detected and utilized for determining the presence of the target cells in the examined tissue. In a described preferred embodiment, the applied energy pulses include laser pulses, and the physical element conjugated with a biological carrier is a light-sensitive semiconductor having an impedance which substantially decreases in the presence of light. The same probe used for detecting the targeted cells may also be used for destroying the cells so targeted.
Abstract:
A sensor unit for use in measurements on a subject is presented. The sensor unit includes a near field electromagnetic sensor and a flexible signal transmission structure, which are integral with one another by means of at least one common continuous surface. The flexible signal transmission structure is constructed from a first layer including signal connection lines associated with sensor cells near field electromagnetic sensor and a second electrically conductive layer electrically coupled to the electrically conductive material of the sensor.
Abstract:
A surgical tool for use in a tissue removal procedure from a subject is described. The surgical tool has proximal and distal regions and at least one sensor for sensing one or more predetermined conditions located at a distal region of the surgical tool. And a substantially flat signal transmission structure electrically connected with the at least one sensor and extending between the location at the distal region and the proximal region. The signal transmission structure is configured for providing impedance controlled signal transmission between the at least one sensor and the proximal region.
Abstract:
A measurement system and method are provided for use in characterizing a tissue. The system comprises a probe adapted for operating in either a scan mode or a measure mode, and a control unit for operating the probe. The probe comprises a sensing module for measuring one or more parameters indicative of one or more states of the tissue; and an attachment module configured and operable to enable selective operation of the probe in either one of the scan mode and the measure modes. The control unit is configured and operative to selectively operate the probe in either one of the scan and measure modes.
Abstract:
The present invention relates to a device for tissue-characterization, designed for effective sensor-to-tissue contact. The device includes an element, having a rigid surface of a linear cross-section, on which at least one sensor is arranged, and a mechanism for applying a force to a soft tissue, the line of force being at an acute angle with the rigid surface, for stretching or stretching and pushing the soft tissue against the rigid surface, thus achieving effective contact between the tissue and the at least one sensor. In consequence, the accuracy of the sensing is improved. In accordance with another embodiment, a plurality of sensors is employed, arranged along a curved element, for providing three-dimensional information regarding the tissue, for example, by small-scale computerized tomography.
Abstract:
The present invention relates to probes, systems, and methods for tissue characterization by its dielectric properties, wherein a physical feature of the probe is designed to define and delimit a tissue volume, at a tissue edge, where characterization takes place. Thus, the probe for tissue-edge characterization comprises: a first inner conductor, which comprises: proximal and distal ends, with respect to a tissue edge, along an x-axis; a first sharp edge, inherently associated with the proximal end; at least one feature, issuing from the first inner conductor, substantially at the proximal end, for forming at least one additional sharp edge, operative to enhance localized electrical fringe fields in the tissue, within a generally predefined tissue volume, at the tissue edge, the tissue volume being generally defined by physical parameters associated with the at least one feature; and a dielectric material, which encloses the conductor, in the y-z planes.