Abstract:
A stacked semiconductor memory device comprises a semiconductor substrate having a functional circuit, a plurality of memory cell array layers, and at least one connection layer. The memory cell array layers are stacked above the semiconductor substrate. The connection layers are stacked above the semiconductor substrate independent of the memory cell array layers. The connection layers electrically connect memory cell selecting lines arranged on the memory cell array layers to the functional circuit.
Abstract:
Multi-level nonvolatile memory devices using variable resistive elements, the multi-level nonvolatile memory devices including a word line, a bit line, and a multi-level memory cell coupled between the word line and the bit line, the multi-level memory cell having first resistance level and a second resistance level higher than the first resistance level when the first and second write biases having the same polarity are applied thereto, and a third resistance level and a fourth resistance level ranging between the first and second resistance levels, when third and fourth write biases having different polarities from each other are applied thereto.
Abstract:
A non-volatile memory device includes a lower molding layer, a horizontal interconnection line on the lower molding layer, an upper molding layer on the horizontal interconnection line, pillars extending vertically through the upper molding layer, the horizontal interconnection line, and the lower molding layer, and a buffer layer interposed between the pillars and the molding layers. The device also includes variable resistance material and a diode layer interposed between the pillars and the horizontal interconnection line.
Abstract:
A memory device includes a memory cell array including a plurality of memory cells, each including a bidirectional variable resistance element and an input/output circuit configured to determine a polarity for a read voltage to be applied to a selected memory cell among the plurality of memory cells and to apply the read voltage with the determined polarity to the selected memory cell. The input/output circuit may include a polarity determination circuit configured to determine the polarity responsive to a determination mode signal and a driver circuit configured to apply the read voltage with the determined polarity to the selected memory cell.
Abstract:
Semiconductor memory device having a stacking structure including resistor switch based logic circuits. The semiconductor memory device includes a first conductive line that includes a first line portion and a second line portion, wherein the first line portion and the second line portion are electrically separated from each other by an intermediate region disposed between the first and second line portions, a first variable resistance material film that is connected to the first line portion and stores data, and a second variable resistance material film that controls an electrical connection between the first line portion and the second line portion.
Abstract:
A stacked semiconductor memory device comprises a semiconductor substrate having a functional circuit, a plurality of memory cell array layers, and at least one connection layer. The memory cell array layers are stacked above the semiconductor substrate. The connection layers are stacked above the semiconductor substrate independent of the memory cell array layers. The connection layers electrically connect memory cell selecting lines arranged on the memory cell array layers to the functional circuit.
Abstract:
A semiconductor memory device includes a first conductive line on a semiconductor substrate, an interlayer insulating layer on the first conductive line, a second conductive line on the interlayer insulating layer, and a memory cell in an hole through the interlayer insulating layer wherein the first and second conductive lines cross, the memory cell including a discrete resistive memory material region disposed in the hole and electrically connected between the first and second conductive lines. The resistive memory material region may be substantially contained within the hole. In some embodiments, contact between the resistive memory material region and the interlayer insulating layer is substantially limited to sidewalls of the interlayer insulating layer in the hole.
Abstract:
A memory cell includes a plug-type first electrode in a substrate, a magneto-resistive memory element disposed on the first electrode, and a second electrode disposed on the magneto-resistive memory element opposite the first electrode. The second electrode has an area of overlap with the magneto-resistive memory element that is greater than an area of overlap of the first electrode and the magneto-resistive memory element. The first surface may, for example, be substantially circular and have a diameter less than a minimum planar dimension (e.g., width) of the second surface. The magneto-resistive memory element may include a colossal magneto-resistive material, such as an insulating material with a perovskite phase and/or a transition metal oxide.
Abstract:
Disclosed is a metal-metal oxide resistive memory device including a lower conductive layer pattern disposed in a substrate. An insulation layer is formed over the substrate, including a contact hole to partially expose the upper surface of the lower conductive layer pattern. The contact hole is filled with a carbon nanotube grown from the lower conductive layer pattern. An upper electrode and a transition-metal oxide layer made of a 2-components material are formed over the carbon nanotube and the insulation layer. The metal-metal oxide resistive memory device is adaptable to high integration and operable with relatively small power consumption by increasing the resistance therein.
Abstract:
A Resistance based Random Access Memory (ReRAM) can include a sense amplifier circuit that includes a first input coupled to a bit line of a reference cell in a first block of the ReRAM responsive to a read operation to a second block.