Abstract:
A multijunction solar cell including a first solar subcell having a first band gap and a first short-circuit current; a second solar subcell disposed over the first solar subcell and having a second band gap greater than the first band gap and a second short-circuit current greater than the first short-circuit current by an amount in the range of 2% to 6%; a third solar subcell disposed over the second solar subcell and having a third band gap greater than the second band gap and a third short-circuit current less than the first short-circuit current by an amount in the range of 2% to 6%; and a fourth solar subcell disposed over the third solar subcell having a fourth band gap greater than the third band gap, and a fourth short-circuit current less than the third short-circuit current by an amount in the range of 6% to 10%, so that at an “end of life” state of the multijunction solar cell in an AM0 space environment the short-circuit current of each of the subcells are substantially identical.
Abstract:
A photovoltaic solar cell for producing energy from the sun including a germanium substrate including a first photoactive junction and forming a bottom solar subcell; a gallium arsenide middle cell disposed on said substrate; an indium gallium phosphide top cell disposed over the middle cell; and a surface grid including a plurality of spaced apart grid lines, wherein the grid lines have a thickness greater than 7 microns, and each grid line has a cross-section in the shape of a trapezoid with a cross-sectional area between 45 and 55 square microns.
Abstract:
Tuning a switching power supply, the power supply including a switching transistor; a filter circuit; a pulse generator that drives the switching transistor; a programmable filter connected to the output of the filter circuit; a digital signal processor (‘DSP’) connected to the output of the filter circuit, the DSP configured to program the programmable filter; and a tuning control circuit connected to the output of the filter circuit, to the pulse generator, and to the DSP; including calculating by the DSP, from sampled voltage values of a tuning pulse driven through the filter circuit by the pulse generator, the actual impedance of the filter circuit; and programming, by the DSP, the programmable filter, setting the combined impedance of the filter circuit and the programmable filter to the design impedance of the filter circuit.
Abstract:
A system and method for implementing a bus. In one embodiment, the system includes a bus switch operative to couple to a bus, and a plurality of trace segments coupled to the bus switch, where the trace segments have different lengths. The bus switch is operative to connect one of the trace segments to the bus based on at least one system requirement, and the selected trace segment cancels signal reflections on the bus.
Abstract:
Printed circuit boards for countering signal distortion are disclosed that include: a conductive pathway on a printed circuit board between a transmitter and a receiver, the conductive pathway comprised of traces and vias connected together for conductive transfer of a signal from the transmitter to the receiver; a parasitic element on the printed circuit board, the parasitic element having a parasitic effect that distorts the signal; and one or more passive elements mounted adjacent to the conductive pathway without connecting to the conductive pathway, the passive elements having a corrective effect to reduce the distortion from the parasitic effect on the signal.
Abstract:
A multi-memory module circuit topology is disclosed that includes a memory controller, a plurality of memory modules connected to the memory controller through a memory bus, and a resonator connected to the plurality of memory modules in a starburst topology. A method for reducing impedance discontinuities in a multi-memory module circuit is disclosed that includes providing a plurality of memory modules connected to a memory controller through a memory bus, selecting a starburst topology, and connecting a resonator to the plurality of memory module in dependence upon the selected starburst topology. An additional method for reducing impedance discontinuities in a multi-memory module circuit is disclosed that includes providing by a resonator a predetermined discontinuity reducing impedance at a predetermined location in the multi-memory module circuit between at least two memory modules, the multi-memory module circuit having a plurality of components of logically arranged around the predetermined location.
Abstract:
An electronic system includes a circuit board formed from a composite material. The composite material includes fibers embedded within a substrate and the fibers are oriented substantially orthogonal to one another. A plurality of traces are formed on the board, and the plurality of traces are oriented relative to at least one of the fibers at an angle between about 17.5° and about 27.5° or between about 20.0° and about 25.0°. A pair of the traces are oriented substantially orthogonal to one another, and a pair of the traces are oriented relative to one another at an angle of about 45.0°. The fibers are fiberglass, and the substrate is an epoxy resin. The fibers have a different dielectric constant than the substrate.
Abstract:
An integrated circuit (IC) that includes a semiconductor die in an IC package. The semiconductor die includes an electrical endpoint. The IC also includes a pad affixed to the semiconductor die. The pad is characterized by a capacitance and is coupled to the electrical endpoint. The IC also includes a bond wire coupling the pad to an IC package pin. The bond wire is an inductor characterized by an inductance. The inductance is configured to decrease signal degradation caused by the capacitance of the pad on electrical signals transmitted between the pin and the electrical endpoint of the semiconductor die.
Abstract:
A multijunction solar cell including an upper first solar subcell, and the base-emitter junction of the upper first solar subcell being a homojunction; a second solar subcell adjacent to said first solar subcell; a third solar subcell adjacent to said second solar subcell. A first graded interlayer is provided adjacent to said third solar subcell. A fourth solar subcell is provided adjacent to said first graded interlayer, said fourth subcell is lattice mismatched with respect to said third subcell. A second graded interlayer is provided adjacent to said fourth solar subcell; and a lower fifth solar subcell is provided adjacent to said second graded interlayer, said lower fifth subcell is lattice mismatched with respect to said fourth subcell.
Abstract:
Methods and systems for implementing such methods for providing server diagnostic and system management information may include, but are not limited to: receiving a network fault status request input; illuminating one or more server node fault indicators for one or more degraded server nodes having one or more faults; receiving a server node fault status request input for a degraded server node having one or more faults; and displaying one or more diagnostic service notifications for one or more faults of the degraded server node. Display of diagnostic service notifications may allow for completion of various service operations associated with service notifications once information specific to a fault is presented. Such service operations may include placing a system in standby mode, transferring workloads to other systems, initiating a firmware update, placing the system in a mode that allows for physical maintenance, or ordering parts associated with one or more faults.