Abstract:
There is provided a nitride semiconductor device including: an n-type nitride semiconductor layer; a p-type nitride semiconductor layer; and an active layer formed between the n-type and p-type nitride semiconductor layers, the active layer including a plurality of quantum well layers and at least one quantum barrier layer deposited alternately with each other, wherein the active layer includes a first quantum well layer, a second quantum well layer formed adjacent to the first quantum well layer toward the p-type nitride semiconductor layer and having a quantum level higher than a quantum level of the first quantum well layer, and a tunneling quantum barrier layer formed between the first and second quantum well layers and having a thickness enabling a carrier to be tunneled therethrough.
Abstract:
The invention provides a method of growing a non-polar a-plane gallium nitride. In the method, first, an r-plane substrate is prepared. Then, a low-temperature nitride-based nucleation layer is deposited on the substrate. Finally, the non-polar a-plane gallium nitride is grown on the nucleation layer. In growing the non-polar a-plane gallium nitride, a gallium source is supplied at a flow rate of about 190 to 390 μmol/min and the flow rate of a nitrogen source is set to produce a V/III ratio of about 770 to 2310.
Abstract:
The present invention relates to a method for preparing a metallic membrane, more particularly to a method for preparing metallic membranes, which comprises dissolving a transition metal of Period 3 and its alloy particle powder and synthetic polymer in a fixed ratio; radiating or casting to prepare a membrane precursor; oxidizing the synthetic polymer on the membrane precursor under a mixed gaseous atmosphere of nitrogen and hydrogen; and sintering the membrane precursor at a predetermined temperature. The metallic membrane prepared by the process of the present invention has excellent mechanical and chemical properties and enables to maintain a relatively small pore size and high porocity than traditional membranes. Therefore, it is useful for water treatment.
Abstract:
Disclosed are a white light emitting diode and a method for manufacturing the white light emitting diode. The white light emitting diode comprises a conductive substrate with a light transmitting property having a surface divided into first and second areas; a first emitting unit including a first clad layer, a first active area, and a second clad layer at the first area of the conductive substrate; a second emitting unit including a third clad layer, a second active area emitting light with a wavelength to be combined with light emitted from the first active area into white light, and a fourth clad layer at the second area of the conductive substrate; and first, second and third electrodes, the first electrode connected to the second surface of the conductive substrate, the second electrode connected to the second clad layer, and the third electrode connected to the fourth clad layer.
Abstract:
Disclosed is a super self-aligned heterojunction bipolar transistor which is capable of miniaturizing an element, simplifying the process step thereof without using a trench isolation process and a sophisticated selective epitaxial growth (SEG) processes. According to this invention, the sophisticated isolation and the SEG techniques are derived by using simple and popular processes. The base layer has multi-layer structure being made of a Si, an undoped SiGe, a SiGe doped a p-type impurity in-situ and Si. Also, the selective epitaxial growth is not required. Thus, it can be less prone to a flow of leakage current or an emitter-base-collector short effect.
Abstract:
A di-p-tolyldialkylsilane derivative, a photoluminescence polymer formed from the derivative, and methods for preparing the derivative and polymer are provided. The di-p-tolyldialkylsilane derivative is represented by the following formula (1): ##STR1## where R.sub.1 and R.sub.2 are independently selected from the group consisting of phenyl and --(CH.dbd.CH).sub.k R.sub.3 (k is an integer between and inclusive of 0 and 2, and R.sub.3 is hydrogen or alkyl), and X.sup.2 is selected from the group consisting of hydrogen, halogen atom and cyano group. The di-p-tolylalkylsilane derivative of the formula (1) is very useful as a monomer of a functional polymer. The photoluminescence polymer formed from the di-p-tolylalkylsilane derivative of the chemical formula (1) contains a repeating unit having a silicon between the conjugated double bonds, thereby suppressing electron movement of the conjugated double bond. As a result, a range of colors between blue and green, particularly, blue, can be obtained. Also, when the photoluminescence polymer is adopted as a color-developing substance, the threshold voltage characteristics are improved.
Abstract:
An improved method for fabricating a heterojunction bipolar transistor which includes the steps of forming a buried collector, a collector thin film, and a collector sinker on a semiconductor substrate in order, forming a first silicon oxide film, a base electrode polysilicon layer, a nitride film, and an oxidation film on a resulting substrate exposing the first silicon oxidation film, forming a spacer insulation film at the lateral side of the exposed region, and defining an activation region, exposing the collector thin film of the activation region using a mask, and forming an auxiliary lateral film for an isolation of the device, forming a selective collector region by ion-implantating a dopant to the activation region which is limited by the auxiliary lateral film, removing the auxiliary lateral film, etching the exposed portion in an anisotropic etching method, and forming a shallow trench for a device isolation, forming a polysilicon lateral film to have a height which is the same as the height of the base electrode polysilicon layer on the shallow trench, and forming a self-aligned base.
Abstract:
There is provided a nitride semiconductor device including: an n-type nitride semiconductor layer; a p-type nitride semiconductor layer; and an active layer formed between the n-type and p-type nitride semiconductor layers, the active layer including a plurality of quantum well layers and at least one quantum barrier layer deposited alternately with each other, wherein the active layer includes a first quantum well layer, a second quantum well layer formed adjacent to the first quantum well layer toward the p-type nitride semiconductor layer and having a quantum level higher than a quantum level of the first quantum well layer, and a tunneling quantum barrier layer formed between the first and second quantum well layers and having a thickness enabling a carrier to be tunneled therethrough.
Abstract:
A nitride semiconductor single crystal substrate, a manufacturing method thereof and a method for manufacturing a vertical nitride semiconductor device using the same. According to an aspect of the invention, in the nitride semiconductor single crystal substrate, upper and lower regions are divided along a thickness direction, the nitride single crystal substrate having a thickness of at least 100 μm. Here, the upper region has a doping concentration that is five times or greater than that of the lower region. Preferably, a top surface of the substrate in the upper region has Ga polarity. Also, according to a specific embodiment of the invention, the lower region is intentionally un-doped and the upper region is n-doped. Preferably, each of the upper and lower regions has a doping concentration substantially identical in a thickness direction.
Abstract:
Disclosed are a white light emitting diode and a method for manufacturing the white light emitting diode. The white light emitting diode comprises a conductive substrate with a light transmitting property having a surface divided into first and second areas; a first emitting unit including a first clad layer, a first active area, and a second clad layer at the first area of the conductive substrate; a second emitting unit including a third clad layer, a second active area emitting light with a wavelength to be combined with light emitted from the first active area into white light, and a fourth clad layer at the second area of the conductive substrate; and first, second and third electrodes, the first electrode connected to the second surface of the conductive substrate, the second electrode connected to the second clad layer, and the third electrode connected to the fourth clad layer.