摘要:
A method of forming a retrograde well in a transistor is provided. A transistor structure having a substrate, a gate, and a gate oxide layer between the substrate and the gate is formed. The substrate includes a channel region located generally below the gate. A first dopant is implanted into the channel region. A second dopant is implanted into the substrate to form a doped source region and a doped drain region. A third dopant is implanted into the gate oxide layer. A source/drain anneal is performed to form a source and a drain in the doped source region and the doped drain region, respectively. The source/drain anneal causes a portion of the first dopant in the channel region to be attracted by the third dopant into the gate oxide layer.
摘要:
A method (100) of forming a transistor includes forming a gate structure (108) over a semiconductor body and forming recesses (112) using an isotropic etch using the gate structure as an etch mask. The isotropic etch forms a recess in the semiconductor body that extends laterally in the semiconductor body toward a channel portion of the semiconductor body underlying the gate structure. The method further includes epitaxially growing silicon (114) comprising stress-inducing species in the recesses. The source and drain regions are then implanted (120) in the semiconductor body on opposing sides of the gate structure.
摘要:
A method (200) fabricating a semiconductor device is disclosed. A poly oxide layer is formed over gate electrodes (210) on a semiconductor body and active regions defined within the semiconductor body in PMOS and NMOS regions. A nitride containing cap oxide layer is formed over the grown poly oxide layer (212). Offset spacers are formed adjacent to sidewalls of the gate electrodes (216). Extension regions are then formed (214) within the PMOS region and the NMOS region. Sidewall spacers are formed (218) adjacent to the sidewalls of the gate. electrodes. An n-type dopant is implanted into the NMOS region to form source/drain regions and a p-type dopant is implanted with an overdose amount into the PMOS region to form the source/drain regions within the PMOS region (220). A poly cap layer is formed over the device (222) and an anneal or other thermal process is performed (224) that causes the p-type dopant to diffuse into the nitride containing cap oxide layer and obtain a selected dopant profile having sufficient lateral abruptness.
摘要:
Transistor fabrication methods (50) are presented in which shrinkable sidewall spacers (120) are formed (66, 68) along sides of a transistor gate (114), and a source/drain implant is performed (74) after forming the sidewall spacer (120). The sidewall spacer width is then reduced by annealing the shrinkable sidewall spacer material (76) following the source/drain implant (74).
摘要:
Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
摘要:
Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
摘要:
Semiconductor components are often fabricated that include a nickel silicide layer, e.g., as part of a gate electrode in a transistor component, which may be formed by forming a layer of nickel on a silicon-containing area of the semiconductor substrate, followed by thermally annealing the semiconductor substrate to produce a nickel silicide. However, nickel may tend to diffuse into silicon during the thermal anneal, and may form crystals that undesirably increase the sheet resistance in the transistor. Carbon may be placed with the nickel to serve as a diffusion suppressant and/or to prevent nickel crystal formation during thermal annealing. Methods are disclosed for utilizing this technique, as well as semiconductor components formed in accordance with this technique.
摘要:
An ammonia-free method of depositing silicon nitride by way of plasma-enhanced chemical vapor deposition (PECVD). Source gases of silane (SiH4) and nitrogen (N2) are provided to a parallel-plate plasma reactor, in which energy is capacitively coupled to the plasma, and in which the wafer being processed has been placed at a support electrode. Low-frequency RF energy (e.g., 360 kHz) is applied to the support electrode; high-frequency RF energy (e.g., 13.56 MHz) is optionally provided to the parallel electrode. Process temperature is above 350° C., at a pressure of about 2.5 torr. Any hydrogen present in the resulting silicon nitride film is bound by N—H bonds rather than Si—H bonds, and is thus more strongly bound to the film. The silicon nitride can serve as passivation for ferroelectric material that may degrade electrically if contaminated by hydrogen.
摘要:
The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively apply strain to multiple regions of a semiconductor device. A semiconductor device having one or more regions is provided (102). A strain inducing liner is formed over the semiconductor device (104). A selection mechanism, such as a layer of photoresist or UV reflective coating is applied to the semiconductor device to select a region (106). The selected region is treated with a stress altering treatment that alters a type and/or magnitude of stress produced by the selected region (108).
摘要:
A transistor is fabricated upon a semiconductor substrate, where the yield strength or elasticity of the substrate is enhanced or otherwise adapted. A strain inducing layer is formed over the transistor to apply a strain thereto to alter transistor operating characteristics, and more particularly to enhance the mobility of carriers within the transistor. Enhancing carrier mobility allows transistor dimensions to be reduced while also allowing the transistor to operate as desired. However, high strain and temperature associated with fabricating the transistor result in deleterious plastic deformation. The yield strength of the silicon substrate is therefore adapted by incorporating nitrogen into the substrate, and more particularly into source/drain extension regions and/or source/drain regions of the transistor. The nitrogen can be readily incorporated during transistor fabrication by adding it as part of source/drain extension region formation and/or source/drain region formation. The enhanced yield strength of the substrate mitigates plastic deformation of the transistor due to the strain inducing layer.