Abstract:
A circuit arrangement for determining in parallel of at least two byte error position signals for identifying at least one byte error in a binary sequence comprising a plurality of bytes, wherein the binary sequence in the error-free case is a code word of an error code, the circuit arrangement is configured such that each of the at least two byte error position signals is determinable using components of an error syndrome of the error code such that the components indicate whether or not a byte of the binary sequence that is associated with the byte error position signal is erroneous.
Abstract:
In various embodiments, a method of correcting and/or detecting an error in a memory device is provided. The method may include, in a first operations mode, applying a first code to detect and/or correct an error, and in a second operations mode after an inactive mode and before entering the first operations mode, applying a second code for correcting and/or detecting an error, wherein the first code and the second code have different code words.
Abstract:
A method and a memory controller for accessing a non-volatile memory are disclosed. The method includes reading a first memory region of the non-volatile memory, ascertaining whether the first memory region contains a predetermined data pattern wherein the predetermined data pattern has no influence on resulting error correcting data determined for at least the first memory region. The method evaluating a data status for a second memory region of the non-volatile memory on the basis of a presence of the predetermined data pattern in the first memory region, wherein the data status indicates at least one of whether valid data is present within the second memory region and whether the second memory region is writable.
Abstract:
A method is proposed for storing bits in memory cells of a memory, wherein in two successive write operations first and second wits are written to identical memory cells at an identical address, without the memory cells being erased after the first write operation, wherein first check bits are stored in further first memory cells and second check bits are stored in further second memory cells. A corresponding device is furthermore specified.
Abstract:
A method and associated apparatus to determine a reference value on the basis of a plurality of half reference values stored in memory cells is disclosed, wherein the plurality of half reference values are read from the memory cells, wherein a subset of half reference values is determined from the plurality of half reference values, and wherein the reference value is determined on the basis of the subset of half reference values.
Abstract:
A method and a memory controller for accessing a non-volatile memory are disclosed. The method includes reading a first memory region of the non-volatile memory, ascertaining whether the first memory region contains a predetermined data pattern wherein the predetermined data pattern has no influence on resulting error correcting data determined for at least the first memory region. The method evaluating a data status for a second memory region of the non-volatile memory on the basis of a presence of the predetermined data pattern in the first memory region, wherein the data status indicates at least one of whether valid data is present within the second memory region and whether the second memory region is writable.
Abstract:
A system and method of refreshing a nonvolatile memory having memory cells. The method includes identifying one or more of the memory cells that do not satisfy a data retention test; remapping the one or more identified memory cells from original memory addresses to spare memory addresses; and refreshing the identified memory cells.
Abstract:
A circuitry is proposed for the correction of errors in a possibly erroneous binary word v′=v′1, . . . , v′n relative to a codeword v=v1, . . . , vn, in particular 3-bit errors containing an adjacent 2-bit error (burst error). The circuitry comprises a syndrome generator and a decoder. A modified BCH is used wherein n′ column vectors of a first BCH code submatrix are paired as column vector pairs so that a componentwise XOR combination of the two column vectors of each column vector pair produces an identical column vector K that is different from all column vectors of the first BCH submatrix. A second BCH submatrix comprises corresponding column vectors as the third power, according to Galois field arithmetic, of the column vector in the first BCH submatrix. The syndrome generated by the syndrome generator can be checked against the columns of the first and second submatrices.
Abstract:
A method for storing data bits in memory cells, in which the data bits have at least one byte-filling bit, where at least one predefined functionality for a subset of the data bits is coded in the at least one byte-filling bit, and in which the data bits are stored in the memory cells. A method for reading data bits from memory cells, in which the data bits have at least one byte-filling bit, where at least one predefined functionality for a subset of the data bits is coded in the at least one byte-filling bit, and in which the data bits are read from the memory cells based on the coded predefined functionality. Corresponding apparatuses and memories are also disclosed.
Abstract:
A solution is proposed for error processing, wherein n byte error positions of n byte errors are predefined (where n is a positive integer), wherein this involves determining whether there is a further byte error position on the basis of the n byte error positions and on the basis of n + 1 error syndrome components of a first error code.