Abstract:
A field effect transistor (FET) with an underlying airgap and methods of manufacture are disclosed. The method includes forming an amorphous layer at a predetermined depth of a substrate. The method further includes forming an airgap in the substrate under the amorphous layer. The method further includes forming a completely isolated transistor in an active region of the substrate, above the amorphous layer and the airgap.
Abstract:
Photodiode structures and methods of manufacture are disclosed. The method includes forming a waveguide structure in a dielectric layer. The method further includes forming a Ge material in proximity to the waveguide structure in a back end of the line (BEOL) metal layer. The method further includes crystallizing the Ge material into a crystalline Ge structure by a low temperature annealing process with a metal layer in contact with the Ge material.
Abstract:
A method for fabricating a backside contact using a silicon-on-insulator substrate that includes a device layer, a buried insulator layer, and a handle wafer. The method includes forming a first switch and a second switch in the device layer. An electrically-conducting connection is formed in a trench. The handle wafer is removed. After the handle wafer is removed, the buried insulator layer is partially removed to expose the electrically-conducting connection. After the buried insulator layer is partially removed, a final substrate is connected to the buried insulator layer such that the electrically-conducting connection contacts the final substrate.
Abstract:
A method for fabricating a backside contact using a silicon-on-insulator substrate that includes a device layer, a buried insulator layer, and a handle wafer. The method includes forming an electrically-conducting connection in a trench. The handle wafer is removed. After the handle wafer is removed, the buried insulator layer is partially removed to expose the electrically-conducting connection. After the buried insulator layer is partially removed, a final substrate is connected to the buried insulator layer such that the electrically-conducting connection contacts the final substrate.
Abstract:
A back-side device structure with a silicon-on-insulator substrate that includes a device layer, a buried insulator layer, a trench that extends through the device layer and that partially extends through the buried insulator layer, at least one dielectric layer that is formed on the device layer and includes a first opening that communicates with the trench and a contact plug that fills the trench. A final substrate is connected to the buried insulator layer such that the contact plug contacts metallization of the final substrate. The contact plug is externally connected with a source to provide signals to the back-side device structure through a wire formed in the at least one dielectric layer.
Abstract:
Approaches for an on-chip antenna are provided. A method includes forming an antenna in an insulator layer at a front side of a substrate. The method also includes forming a trench in the substrate underneath the antenna. The method further includes forming a fill material in the trench. The substrate is composed of a material having a first dielectric constant. The fill material has a second dielectric constant that is less than the first dielectric constant.
Abstract:
A field effect transistor (FET) with an underlying airgap and methods of manufacture are disclosed. The method includes forming an amorphous layer at a predetermined depth of a substrate. The method further includes forming an airgap in the substrate under the amorphous layer. The method further includes forming a completely isolated transistor in an active region of the substrate, above the amorphous layer and the airgap.
Abstract:
Tunable filter structures, methods of manufacture and design structures are disclosed. The method of forming a filter structure includes forming a piezoelectric resonance filter over a cavity structure. The forming of the piezoelectric resonance filter includes: forming an upper electrode on one side of a piezoelectric material; and forming a lower electrode on an opposing side of the piezoelectric material. The method further includes forming a micro-electro-mechanical structure (MEMS) cantilever beam at a location in which, upon actuation, makes contact with the piezoelectric resonance filter.
Abstract:
Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam formed above the piezoelectric substrate and at a location in which, upon actuation, the MEMS beam shorts the piezoelectric filter structure by contacting at least one of the plurality of electrodes.
Abstract:
Various methods include: forming an optical waveguide in a bulk silicon layer, the optical waveguide including a set of shallow trench isolation (STI) regions overlying a silicon substrate region; ion implanting the silicon substrate to amorphize a portion of the silicon substrate; forming a set of trenches through the STI regions and into the underlying silicon substrate region; undercut etching the silicon substrate region under the STI regions through the set of trenches to form a set of cavities, wherein the at least partially amorphized portion of the silicon substrate etches at a rate less than an etch rate of the silicon substrate; and sealing the set of cavities.