Abstract:
A process and resultant article of manufacture made by such process comprises forming through vias needed to connect a bottom device layer in a bottom silicon wafer to the one in the top device layer in a top silicon wafer comprising a silicon-on-insulator (SOI) wafer. Through vias are disposed in such a way that they extend from the middle of the line (MOL) interconnect of the top wafer to the buried oxide (BOX) layer of the SOI wafer with appropriate insulation provided to isolate them from the SOI device layer.
Abstract:
A semiconductor device includes a dielectric isolation layer, a plurality of gates formed above the dielectric isolation layer, a plurality of source/drain regions above the dielectric isolation layer between the plurality of gates, and at least one contact placeholder for a backside contact. The at least one contact placeholder contacts a bottom surface of a first source/drain region of the plurality of source/drain regions. The semiconductor device further includes at least one backside contact contacting a bottom surface of a second source/drain region of the plurality of source/drain regions, and a buried power rail arranged beneath, and contacting the at least one backside contact.
Abstract:
A method of manufacturing a semiconductor device is provided. The method includes forming a first trench partially through a first substrate from a first side of the first substrate. The method also includes widening a bottom portion of the first trench to form a lateral footing area of the first trench. The method includes forming a first metallization in the first trench; forming a second trench through a second substrate from a second side of the second substrate to expose at least a portion of first metallization in an area corresponding to the lateral footing area of the first trench, the second side being opposite to the first side. The method also includes forming a second metallization in the second trench in contact with the first metallization.
Abstract:
A semiconductor device is provided. The semiconductor device includes a protective liner, and a buried power rail on a first portion of the protective liner, wherein the protective liner is on opposite sides of the buried power rail. The semiconductor device further includes a source/drain on a second portion of the protective liner, wherein the source/drain is offset from the buried power rail, and a source/drain contact on the source/drain and in electrical communication with the buried power rail.
Abstract:
Technical solutions are described for implementing an optogenetics treatment using a probe and probe controller are described. A probe controller controls a probe to perform the method that includes emitting, by a light source of the probe, the probe is embeddable in a tissue, a light wave to interact with a corresponding chemical in one or more cells in the tissue. The method further includes capturing, by a sensor of the probe, a spectroscopy of the light wave interacting with the corresponding chemical. The method further includes sending, by the probe, the spectroscopy to an analysis system. The method further includes receiving, by the probe, from the analysis system, adjusted parameters for the light source, and adjusting, by a controller of the probe, settings of the light source according to the received adjusted parameters to emit a different light wave to interact with the corresponding chemical.
Abstract:
A method of manufacturing a semiconductor device is provided. The method includes forming a first recess partially through a substrate from a first side of the substrate, forming a dielectric layer in the first recess, forming a second recess partially through the dielectric layer from the first side of the substrate, and forming a buried power rail (BPR) in the second recess of the dielectric layer. The method also includes thinning the substrate from a second side of the substrate to a level of the dielectric layer, the second side of the substrate being opposite to the first side of the substrate.
Abstract:
A three-dimensional (3D) comb probe structure includes a carrier, a plurality of combs arranged in the carrier and spaced apart from one another, a plurality of shanks forming the combs, each shank including a base portion and a stem portion extending from the base portion, wherein sets of the shanks are joined together by the base portions thereof to form a respective comb, and a plurality of sensing elements disposed along the stem portion of each of the shanks and electrically connected to electrical contacts disposed at respective ones of the base portions. The sensing elements can include nanopatterned features on surfaces thereof forming a non-random topography.
Abstract:
The present invention relates to CNT filled polymer composite system possessing a high thermal conductivity and high temperature stability so that it is a highly thermally conductive for use in 3D and 4D integration for joining device sub-laminate layers. The CNT/polymer composite also has a CTE close to that of Si, enabling a reduced wafer structural warping during high temperature processing cycling. The composition is tailored to be suitable for coating, curing and patterning by means conventionally known in the art.
Abstract:
Techniques regarding an implantable biosensor package are provided. For example, one or more embodiments described herein can regard an apparatus, which can comprise a biosensor module. The biosensor module can comprise a semiconductor substrate and a processor. The semiconductor substrate can have a sensor operably coupled to the processor. The apparatus can also comprise a polymer layer. The biosensor module can be embedded within the polymer layer such that the polymer layer can be provided on a plurality of sides of the biosensor module.
Abstract:
A nanodevice includes an array of metal nanorods formed on a substrate. An electropolymerized electrical conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open or close responsively to electrical signals applied to the nanorods. A cell loading region is disposed in proximity of the reservoir, and the cell loading region is configured to receive stem cells. A neurotrophic dispensing material is loaded in the reservoir to be dispersed in accordance with open pores to affect growth of the stem cells when in vivo.