摘要:
An optical integrated semiconductor light emitting device with improved light emitting efficiency is provided by preventing leak current from flowing through a high defect region of the substrate. The optical integrated semiconductor light emitting device includes: a substrate, in which in a low defect region made of crystal having a first average dislocation density, one or more high defect regions having a second average dislocation density higher than the first average dislocation density are included; and a Group III-V nitride semiconductor layer which is formed on the substrate, has a plurality of light emitting device structures, and has a groove in the region including the region corresponding to the high defect region (high defect region).
摘要:
A ground coil device for a magnetic levitation railway that can be manufactured with a high productivity and exhibit less fluctuation in strength, reduced weight, and good recyclability, and a process for manufacturing the device. The ground coil device includes a coil conductor covered with a thermoplastic resin molding material containing 100 parts by mass of a thermoplastic resin, from 20 to 200 parts by mass of an inorganic filler, and from 0 to 25 parts by mass of an elastomer. A process for producing the ground coil device for magnetic levitation railway includes filling the thermoplastic resin molding material into a cavity of a metal mold into which the coil conductor is previously inserted, by an injection molding method, to obtain an integrally molded product.
摘要:
A method for manufacturing a semiconductor laser includes the steps of forming a mask layer having a stripe-shaped mask portion corresponding to a ridge stripe to be formed on a nitride-based group III-V compound semiconductor layer, etching the nitride-based group III-V compound semiconductor layer to a predetermined depth using the mask layer to form the ridge stripe, forming a resist to cover the mask layer and the nitride-based group III-V compound semiconductor layer, etching-back the resist until the stripe-shaped mask portion of the mask layer is exposed, removing the exposed mask portion of the mask layer by etching to expose the upper surface of the ridge stripe, forming a metal film on the resist and the exposed ridge stripe to form an electrode on the ridge stripe, removing the resist together with the metal film formed thereon, and removing the mask layer by etching.
摘要:
A method for producing a semiconductor laser having an edge window structure includes the steps of forming masks of insulating films on a nitride-based III-V compound semiconductor substrate including first regions and second regions periodically arranged in parallel therebetween; and growing a nitride-based III-V compound semiconductor layer in a region not covered by the masks. The first region between each two adjacent second regions has two or more positions, symmetrical with respect to a center line thereof, where laser stripes are to be formed. The masks are formed on one or both sides of each of the positions where the laser stripes are to be formed at least near a position where edge window structures are to be formed such that the masks are symmetrical with respect to the center line. The nitride-based III-V compound semiconductor layer includes an active layer containing at least indium and gallium.
摘要:
A method of manufacturing a semiconductor laser having an end face window structure, by growing over a substrate a nitride type Group III-V compound semiconductor layer including an active layer including a nitride type Group III-V compound semiconductor containing at least In and Ga. The method includes the steps of forming a mask including an insulating film over the substrate, at least in the vicinity of the position of forming the end face window structure; and growing the nitride type Group III-V compound semiconductor layer including the active layer over a part, not covered with the mask, of the substrate.
摘要:
An object of the invention is to achieve a high output gain waveguide semiconductor laser device exhibiting high reliability by suppressing growth of DLD. A semiconductor laser device includes a semiconductor laser structure of a gain waveguide formed on a semiconductor substrate in which two grooves extending in an oscillation direction thereof are formed, wherein a current injection stripe is arranged between the two grooves. Preferably, a quantum well constituting an active layer of the semiconductor laser device is composed of GaAs.
摘要:
A real index guided semiconductor laser device includes an optical waveguide layer at least on one side of an active layer that has a band gap energy not less than that of the active layer; a cladding layer on an outer side of the optical waveguide layer that has a band gap energy not less than that of the optical waveguide layer; a refractive index control layer having a striped window, buried in the optical waveguide layer by selective growth; and a semiconductor layer formed in the optical waveguide layer by selective growth prior to the selective growth of the refractive index control layer. In a laminated portion including the semiconductor layer and the refractive index control layer, a change in effective refractive index due to a change in thickness of the semiconductor layer is smaller than that of the refractive index control layer.
摘要:
Optical guide layers are formed on both faces of the active layer, respectively, which optical guide layers have a band gap wider than that of the active layer, an n-type cladding layer and a p-type cladding layer respectively formed so as to sandwich the active layer and the optical guide layers therebetween, which cladding layers have a band gap wider than those of the optical guide layers, and carrier blocking layers are respectively formed between the active layer and the optical guide layers, which carrier blocking layers have a band gap wider than those of the active layer and the optical guide layers. The refractive index of the p-type cladding layer is lower than that of the n-type cladding layer. With such constitution inner losses are limited to a low level, as free carrier absorption is reduced, and the electric and thermal resistances of a semiconductor laser device are reduced, with the result that the laser device is enhanced in efficiency and output power.
摘要:
A semiconductor device including a buffer layer 32 on n-GaAs, a clad layer 31, a wave guide layer 30 and a carrier block layer 29 of n-AlGaAs, a side barrier layer 28 of non-doped AlGaAs, an active layer 27 which is formed by two non-doped GaAs quantum well layers and a barrier layer of AlGaAs, a side barrier layer 26 of non-doped AlGaAs, a carrier block layer 25, a wave guide layer 23 and a clad layer 22 of p-AlGaAs, and a cap layer 21 of p-GaAs are grown in this order. Inside the wave guide layer 23, current blocking layers 24 having a lower refractive index and higher Al-composition than that of the wave guide layer and sandwich a strip-shaped active region 34. This creates a refractive index difference between the active region 34 and buried regions 33 in which each of the current blocking layers 24 exists, thereby forming a refractive index guide structure. Thus, it is possible to obtain a high-output semiconductor laser device of the refractive index guided type which is easy to manufacture.
摘要:
A fluid pressure control unit has a changeover valve and an electromagnetic discharge valve combined with each other so that with the opening and closing of the latter valve, the communication between the inlet leading to the pressure source and the first and second outlets leading to wheel brakes is changed over for normal braking, pressure reduction for antilock control and pressure reincrease. Part of the sleeve of the changeover valve is used as the frame of the discharge valve which functions as a magnetic circuit. This reduces the number of parts, eliminates the need for an O-ring and facilitates maintenance.