Abstract:
Systems and methods for enabling a WLAN client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.
Abstract:
Systems and methods for enabling a WLAN client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.
Abstract:
Systems and methods for enabling a wireless local area network (WLAN) client to communicate simultaneously over more than one band at a time are described, where each client has at least one radio that is operational in each supported band. Load balancing based on traffic requirements optimizes the use of the multiple bands.
Abstract:
Techniques are disclosed for reducing interference, in a network device, among multiple radio circuits operating in a same or similar frequency band and in close physical proximity. In some embodiments, a network device includes a first and a second wireless network circuit. The network circuits operate in a same radio frequency band and are collocated. The second network circuit is assigned a higher priority than the first network circuit. The device further includes a coexistence controller coupled to the network circuits via a communication bus and configured to selectively suppress transmitting operations of the first network circuit during receiving operations of the second network circuit. Among other benefits, the embodiments can increase wireless network bandwidth and reduce mobile device power consumption by providing coordination among the radio circuits so that the transmitting and receiving operations are performed in a way that they do not interfere with their respective antennas.
Abstract:
Techniques are disclosed for controlling, in a network device, multiple radio circuits operating in a same or similar frequency band and in close physical proximity. In some embodiments, the radio circuits operate on the same network protocol. The network device can include a coexistence controller coupled to the network circuits. According to some embodiments, the network circuits are each assigned a priority, and the coexistence controller can control operations among the network circuits by selectively adjusting one or more transmission operating parameters of a respective network circuit based on a plurality of operating criteria, which include each network circuit's priority. Among other benefits, the embodiments disclosed herein can increase wireless network bandwidth and reduce mobile device power consumption by providing coordination among the radio circuits so that the transmitting and receiving operations are performed in a way that they do not interfere with their respective antennas.
Abstract:
The disclosed method is performed by a cloud system for changing a registration of a network access device. The method includes initiating a change of a registration of a network access device. The registration is stored at a cloud system and indicates ownership of the network access device by a first user. The method further includes receiving an authorization from the first user to dissociate the ownership of the network access device by the first user, and receiving an indication of a physical reset occurring locally at the network access device. The physical reset allows the first user to dissociate the ownership of the network access device. The method further includes, upon receiving both the authorization by the first user and the indication of the physical reset, releasing the ownership by the first user of the network access device at the cloud system.
Abstract:
Disclosed is a way to expand the range of Internet of Things devices in a home, office, or structure to the range of a local WiFi network. This is accomplished by generating a network bridge for the devices using machine-to-machine protocols to communicate using the WiFi network backhaul channel. Transmissions in machine-to-machine protocol are tunneled through WiFi communications and extracted by the closest access point. Access points include radios for both WiFi and machine-to-machine protocols.
Abstract:
Introduced here are technologies for securely booting a network access device or a satellite device. A network-accessible server system may receive a boot request that includes a boot certificate to identify the network access device. The network-accessible server system may determine that the boot certificate corresponds with a verified boot certificate listed on a boot certificate registry. The network-accessible server system may determine that a geographical location of the network access device and a user electronic application executing on an electronic device are within a predetermined range. The network-accessible server system may distribute a digital certificate to the network access device based on determining that the boot certificate corresponds with any verified boot certificate listed on the boot certificate registry and determining that the geographical location of the network access device and the user electronic application executing on the electronic device are within the predetermined range.
Abstract:
Methods, apparatuses, and embodiments related to wireless communication in an environment with electromagnetic interference. In some embodiments, during an initial interconnection setup between a transmitting wireless local area network (WLAN) and a receiving WLAN device, and a first frame or packet is wirelessly transmitted or received by the wireless device. An electromagnetic signal from nearby devices that interferes with wireless transmission is detected. Based on the detection of the wireless transmission interference, the wireless communication parameter is changed to increase communication throughput, and a second frame or packet is wirelessly transmitted or received.
Abstract:
Disclosed is a dedicated control channel for a WLAN network. A number of access points are networked together and communicate data necessary to propagate the WLAN over a backhaul channel, however a dedicated radio on each access point is used to communicate control information between the access points. The control information is communicated over a control channel that is different from the client facing channels or bands, and the backhaul channel. In some embodiments, the control channel is sub 1 GHz.