Abstract:
Aspects disclosed in the detailed description include skew control for three-phase communication. A three-phase communication involves three signal branches. A signal skew may occur when one signal branch is being coupled to a common mode voltage while another signal branch is being decoupled from the common mode voltage. In this regard, in one aspect, an impedance mismatch is introduced in the signal branch being coupled to the common mode voltage to help shift a rightmost crossing of the signal skew leftward. In another aspect, a current source or a current sink is coupled to the signal branch being decoupled from the common mode voltage to help shift a leftmost crossing of the signal skew rightward. By shifting the rightmost crossing leftward and the leftmost crossing rightward, it is possible to reduce the signal skew, thus leading to reduced jitter and improved data integrity in the three-phase communication.
Abstract:
A termination network circuit for a differential signal transmitter comprises a plurality of n resistance elements and a plurality of differential signal drivers. A first end of each of the resistance elements is coupled at a common node, where n is an integer value and is the number of conductors used to transmit a plurality of differential signals. Each differential signal driver may include a positive terminal driver and a negative terminal driver. The positive terminal driver is coupled to a second end of a first resistance element while the negative terminal driver is coupled to a second end of a second resistance element. The positive terminal driver and the negative terminal driver are separately and independently switchable to provide a current having a magnitude and direction. During a transmission cycle each of the resistance elements has a current of a different magnitude and/or direction than the other resistance elements.
Abstract:
System, methods and apparatus are described that facilitate tests and measurements related to multi-wire, multi-phase communications links. Information is transmitted in N-phase polarity encoded symbols and an eye pattern corresponding to the symbols may be generated such that the symbols are aligned with a trigger for each symbol that corresponds to a clock edge used to sample the symbols. The eye pattern may be used to determine sufficiency of setup times in the communication links and other such characteristics defining a communications channel capabilities.
Abstract:
Systems and methods for multi-phase signaling are described herein. In one embodiment, a method for receiving data comprises receiving a sequence of symbols from a plurality of conductors, and generating a clock signal by detecting transitions in the received sequence of symbols. The method also comprises delaying the received sequence of symbols, and capturing one or more symbols in the delayed sequence of symbols using the clock signal, wherein a previous symbol in the delayed sequence of symbols is captured using a clock pulse in the clock signal generated based on a detected transition to a current symbol in the received sequence of symbols.
Abstract:
System, methods and apparatus are described that facilitate transmission of data, particularly between two devices within an electronic apparatus. Data is selectively transmitted as N-phase polarity encoded symbols or as packets on differentially driven connectors. A desired operational mode for communicating between the two devices is determined, an encoder is selected to drive a plurality of connectors communicatively coupling the two devices, and a plurality of drivers is configured to receive encoded data from the encoder and drive the plurality of connectors. Switches may couple outputs of the selected encoder to the plurality of drivers. One or more outputs of another encoder may be caused or forced to enter a high impedance mode.
Abstract:
An apparatus has a plurality of multi-level comparison circuits, each coupled to a pair of wires in a three-wire communication link, a plurality of first-level clock recovery circuits and a second-level clock recovery circuit. Each multi-level comparison circuit provides a multibit signal as an output. Each first-level clock recovery circuit includes a plurality of first-level flipflops clocked by transitions in a multibit signal received from one multi-level comparison circuit of the plurality of multi-level comparison circuits, and a first delay circuit that delays an output of the each first-level clock recovery circuit to provide a first reset signal that resets the each first-level clock recovery circuit. The second-level clock recovery circuit includes a second-level flipflop clocked by transitions in the outputs of the plurality of first-level clock recovery circuits, and a second delay circuit that delays an output of the second-level clock recovery circuit to provide a second reset signal to the second-level flipflop.
Abstract:
Serializers and deserializers for odd ratio parallel data buses are disclosed. In one embodiment, serializers and deserializers operating with an odd number of parallel data bits work with a half-rate clock to provide a serial data stream at a full clock rate. By providing a half-rate clock, power and area are conserved on the integrated circuit incorporating the serializer. Additionally, by providing a 7:1 serializer, the bus is now compatible with the MIPI C-PHY standard.
Abstract:
Serializers and deserializers for odd ratio parallel data buses are disclosed. In one embodiment, serializers and deserializers operating with an odd number of parallel data bits work with a half-rate clock to provide a serial data stream at a full clock rate. By providing a half-rate clock, power and area are conserved on the integrated circuit incorporating the serializer. Additionally, by providing a 7:1 serializer, the bus is now compatible with the MIPI C-PHY standard.
Abstract:
Systems and methods for dividing input clock signals by programmable divide ratios can produce output clock signals with the delay from the input clock signal to the output clock signal independent of the value of the divide ratio and with the duty cycle of the output clock signal being 50% independent of the value of the divide ratio. An example programmable clock divider includes a modulo N counter that produces a count signal that counts modulo the divide ratio and a half-rate clock signal generator that produces a common half-rate clock signal, an even half-rate clock signal, and an odd half-rate clock signal that toggle at one-half the rate of the output clock signal. The common half-rate clock signal, the even half-rate clock signal, and the odd half-rate clock signal are combined to produce the output clock signal.
Abstract:
A method for performing multi-wire signaling decoding is provided. A raw symbol spread over a plurality of n wires is received via a plurality of differential receivers. The raw symbol is converted into a sequential number from a set of sequential numbers. Each sequential number is converted to a transition number. A plurality of transition numbers is converted into a sequence of data bits. A clock signal is then extracted from the reception of raw symbols.