Abstract:
A top cap is provided for a bicycle handlebar stem. The top cap includes a cap body, which has a lower portion forming a fitting cylinder of a reduced diameter and a radially expanding circumferential shoulder atop the fitting cylinder. A barrel extends from a bottom of the fitting cylinder. The barrel forms a downward-facing hollow blind hole. The cap body forms a bolt head hole extending therethrough and coaxial with and communicating the blind hole. The barrel forms slits, which define a tightening section.
Abstract:
A semiconductor package includes a lead frame, at least one chip and a molding compound. The lead frame comprises a plurality of leads, each lead comprises a first end portion and at least one coupling protrusion, wherein the first end portion comprises a first upper surface, the coupling protrusion comprises a ring surface and is integrally formed as one piece with the first upper surface. The chip disposed on top of the leads comprises a plurality of bumps and a plurality of solders, the coupling protrusions embed into the solders to make the ring surfaces of the coupling protrusions cladded with the solders. The solders cover the first upper surfaces. The chip and the leads are cladded with the molding compound.
Abstract:
A semiconductor package structure includes a first substrate, a second substrate and an encapsulant. The first substrate comprises a plurality of first bumps and a plurality of first solder layers. Each of the first solder layers is formed on each of the first bumps and comprises a cone-shaped slot having an inner surface. The second substrate comprises a plurality of second bumps and a plurality of second solder layers. Each of the second solder layers is formed on each of the second bumps and comprises an outer surface. Each of the second solder layers is a cone-shaped body. The second solder layer couples to the first solder layer and is accommodated within the first solder layer. The inner surface of the cone-shaped slot contacts with the outer surface of the second solder layer. The encapsulant is formed between the first substrate and the second substrate.
Abstract:
A system and method for reducing cross-talk in complementary metal oxide semiconductor back side illuminated image sensors is provided. An embodiment comprises forming a grid around the pixel regions on an opposite side of the substrate than metallization layers. The grid may be formed of a material such as tungsten with a (110)-rich crystalline orientation. This orientation helps prevents defects that can occur during patterning of the grid.
Abstract:
A system and method for forming a semiconductor device is provided. An embodiment comprises forming a silicide region on a substrate along with a transition region between the silicide region and the substrate. The thickness of the silicide precursor material layer along with the annealing conditions are controlled such that there is a larger ratio of one atomic species within the transition region than another atomic species, thereby increasing the hole mobility within the transition region.
Abstract:
A target includes nickel and a secondary metal. The secondary metal has a volume percentage between about 1 percent and about 10 percent. The secondary metal has a density between about 5,000 kg/m3 and about 15,000 kg/m3.
Abstract translation:目标包括镍和二次金属。 次级金属的体积百分比在约1%至约10%之间。 二次金属具有约5,000kg / m 3至约15,000kg / m 3的密度。
Abstract:
A power-mode-aware (PMA) clock tree and a synthesis method thereof are provided. The clock tree includes a sub clock tree and a PMA buffer. The sub clock tree transmits a delayed clock signal to a function module, wherein a power mode of the function module is determined according to a power information. The PMA buffer is coupled to the sub clock tree. The PMA buffer determines the delay time of a system clock signal according to the power information delays the system clock signal, and outputs the delayed system clock signal to the sub clock tree as the delayed clock signal.
Abstract:
A method and an apparatus for auto-tracking and compensating a clock frequency are disclosed. The method is suitable for being applied in USB controllers. The apparatus for receiving a data stream includes an oscillator, for generating a sampling clock; a clock extractor, for extracting a system clock according to the data stream and the sampling clock; a pattern extractor, coupled to the clock extractor to extract a plurality of patterns from the data stream according to the system clock; a counter coupled to the pattern extractor for counting the length of the data stream and generating a counting value, according to the sampling clock, in response to the patterns; an arithmetic logic unit (ALU), coupled to the counter and the pattern extractor for mapping a configuration according to the counting value and a reference value; and a register, coupled to the ALU and the oscillator to temporarily store the configuration and feedback the configuration to the ALU, so that the oscillator updates the frequency of the sampling clock in response to the configuration.
Abstract:
A semiconductor device. The semiconductor device includes a substrate, a dielectric layer formed thereon, an opening formed in the dielectric layer, a first barrier layer overlying the sidewall of the opening, a second barrier layer overlying the first barrier layer and the bottom of the opening, and a conductive layer filled into the opening. The invention also provides a method of fabricating the semiconductor device.
Abstract:
A screwdriver includes a handle including a receptacle for coupling with an end of a bit. A front groove and a rear groove are respectively defined in a front end and a rear end of the handle. A plurality of light-emitting diodes are mounted on a circuit board in the front groove of the handle. A transparent cover is mounted in the front groove and in front of the light-emitting diodes. A front cap is mounted to the front end of the handle. A cell and a switch are mounted in the rear groove. A rear cap is mounted to the rear end of the handle. The switch, the cell, the circuit board, and the light-emitting diodes are electrically connected. The light-emitting diodes forwardly emit light beams passing through the transparent cover to provide illumination when required.