Abstract:
Semiconductor packages and methods of making packages are disclosed. An exemplary method includes providing a printed circuit board having a first surface with circuit traces thereon, first apertures, and a second aperture. Each circuit trace overlies a first aperture, and an end of the circuit trace is near the second aperture. Solder balls are placed in each first aperture and fused to the overlying circuit trace. A die is placed in the second aperture. Each circuit trace may include a third aperture over the first aperture. Solder from the solder ball within the first aperture fills the overlying third aperture. A second package can be stacked on a first package. Solder balls of the second package each fuse with an underlying solder ball of the first package through a third aperture of the first package. The dies of the stacked packages may be positioned for optical communication with each other.
Abstract:
An image sensor package includes an image sensor having an upper surface. The image sensor further includes an active area and bond pads on the upper surface. A window is supported above the active area by a window support. Interior traces are formed on a lower surface of a step up ring. Electrically conductive bumps are formed between the interior traces on the lower surface of the step up ring and the bond pads on the upper surface of the image sensor thus flip chip mounting the step up ring to the image sensor. Electrically conductive vias extend through the step up ring to electrically connect the interior traces to exterior traces formed on an upper surface of the step up ring.
Abstract:
An image sensor package includes a molding having a locking feature. The package further includes a snap lid having a tab, where the tab is attached to the locking feature of the molding. To form the image sensor package, a window is placed in a pocket of the molding. The snap lid is secured in place. Once secured, the snap lid presses against a peripheral region of an exterior surface of the window. The window is sandwiched between the molding and the snap lid and held in place.
Abstract:
An image sensor package includes an image sensor having an upper surface with an active area and bond pads formed thereon. A noncritical region of the upper surface is between the active area and the bond pads. A window overlies the active area and is supported on the noncritical region by a window support. The window, window support and image sensor define a sealed cavity and the active area is located within the cavity. In particular, the active area is located within the cavity, which is sealed to protect the active area against external moisture, dust and contamination.
Abstract:
An image sensor package includes a molding having a locking feature. The package further includes a snap lid having a tab, where the tab is attached to the locking feature of the molding. To form the image sensor package, a window is placed in a pocket of the molding. The snap lid is secured in place. Once secured, the snap lid presses against a peripheral region of an exterior surface of the window. The window is sandwiched between the molding and the snap lid and held in place.
Abstract:
Disclosed herein are semiconductor packages and stacks thereof. An example package includes an insulative substrate having a first surface, first apertures, a second aperture, and circuit traces on the first surface. A first portion of each circuit trace overlies a first aperture and an end of the circuit trace is near the second aperture. A solder ball is in each first aperture, fused to the overlying circuit trace. A semiconductor die is in the second aperture and is electrically connected to the ends of the traces. A third aperture may extend through the first portion of each circuit trace. A second package can be stacked on a first package. Solder balls of the second package each fuse with an underlying solder ball of the first package through a third aperture of the first package. The dies of the stacked packages may be positioned for optical communication with each other.
Abstract:
A structure includes a substrate such as a wafer or an array of packages. The substrate has a front-side surface and a back-side surface. A reference feature such as a scribe grid is on the front-side surface. In at least one alignment mark is on the back-side surface, the alignment mark having a precise positional relationship to the reference feature on the front-side surface. The reference mark is used to cut the substrate from the back-side surface.
Abstract:
An image sensor package includes an image sensor having bond pads and an active area on an upper surface of the image sensor. The image sensor package further includes a window support on the upper surface of the image sensor. The window support entirely encloses the upper surface including the active area and the bond pads. A window is in contact with the window support, the window overlying the active area. Generally, the window support and the window entirely enclose, and thus protect, the active area of the image sensor.
Abstract:
A method is disclosed for instructing a user interface (UI) in communication with a first of vision processor (VP) to establish communication with a second (VP). The invention is useful in a machine vision system having a plurality of VPs and at least one UI. The method includes the steps of providing each VP with a link function for establishing communication between a VP and a UI; and activating the link function so as to issue instructions to the UI to establish communication with another VP. The link function enables local dynamic display of a remote VP on the UI, and a dynamic connection that provides a continually updated display representing a current state of the VP connected to the UI. An operator may observe results and alter parameters on any of the VPs in the system without having to first understand the architecture of the machine vision system.
Abstract:
A digital still camera module includes an image sensor package (2) and a lens barrel (30) mounted on the image sensor package. The image sensor package includes a substrate (20), an image sensor chip (22), and a cover (28). The substrate defines a receiving chamber (203) therein. The image sensor chip mounted in the receiving chamber of the substrate. The cover, which is transparent and has a smaller profile than that of the substrate, is secured to the top portion of the substrate thereby sealing the receiving chamber. The top portion of the substrate has an uncovered section (29) at a periphery of the cover. The lens barrel includes at least one lens (31) received therein. The lens barrel is securely attached to the uncovered section of the top portion of the substrate.