摘要:
A semiconductor laser device having a real refractive index guided structure capable of obtaining a high kink light output and a high maximum light output also when a vertical beam divergence angle is at a small level of at least 12.5° and not more than 20.0° is provided. This semiconductor laser device comprises an n-type cladding layer of AlGaInP formed on an n-type GaAs substrate, an active layer having an AlGaInP layer formed on the n-type cladding layer, a p-type cladding layer of AlGaInP formed on the active layer and a light confinement layer formed to partially cover the p-type cladding layer, and a vertical beam divergence angle is at least 12.5° and not more than 20.0°. Thus, a higher kink light output and a higher maximum light output can be obtained as compared with a conventional semiconductor laser device having a vertical beam divergence angle exceeding 20.0°.
摘要:
A semiconductor laser device comprises an n-type cladding layer, an active layer formed on the n-type cladding layer and having a quantum well structure including one or a plurality of quantum well layers, a p-type cladding layer comprising a flat portion formed on the active layer and a stripe-shaped ridge portion on the flat portion, and a current blocking layer formed on the flat portion so as to cover the side surface of the ridge portion and formed on a region on the upper surface of the ridge portion from one of facets of a cavity to a position at a predetermined distance therefrom.
摘要:
A semiconductor laser device including an n-type cladding layer, an active layer, a p-type cladding layer having a ridge portion, an n-type optical confinement layer formed on the flat portion and side surfaces of the ridge portion of the p-type cladding layer, and an n-type current blocking layer formed on the n-type optical confinement layer in this order. The optical confinement layer is composed of a low resistivity layer doped with n-type impurity, which has a smaller refractive index than the p-type cladding layer and a bandgap energy greater than the energy of lasing light. The optical confinement layer has an impurity concentration of 5.times.10.sup.7 cm.sup.-3 or less. The n-type current blocking layer has a thickness of 0.4 .mu.m or less.
摘要翻译:一种半导体激光装置,包括n型包层,有源层,具有脊部的p型包覆层,形成在平坦部分上的n型光限制层和p型包层, 型包层,以及n型光限制层上形成的n型电流阻挡层。 光限制层由掺杂有n型杂质的低电阻率层构成,其折射率比p型覆层更小,并且带隙能量大于激光的能量。 光学限制层的杂质浓度为5×10 7 cm -3以下。 n型电流阻挡层的厚度为0.4μm以下。
摘要:
A semiconductor laser diode capable of further improving temperature characteristics while sufficiently preventing a laser beam emission end surface portion from thermal destruction through a window structure is obtained. This semiconductor laser diode comprises an active layer having a window structure on a laser beam emission end surface portion and a p-type layer, formed on the surface of the active layer, containing Mg and Zn as impurities. The impurity concentration of Zn contained in the p-type layer is larger than the impurity concentration of Mg contained in the p-type layer.
摘要:
A semiconductor laser device according to the present invention comprises a GaAs substrate of a first conductivity type, a cladding layer of the first conductivity type formed on one main surface of the substrate, an active layer having a quantum well structure in which a tensile strain quantum well layer and a quantum barrier layer which are formed on the cladding layer of the first conductivity type are alternately laminated, and a cladding layer of a second conductivity type formed on the active layer. The one main surface of the substrate is a surface misoriented by 9.degree. to 17.degree. from a {100} plane of the substrate in a direction, and the cavity length is not less than 150 .mu.m nor more than 300 .mu.m.
摘要:
A semiconductor laser device capable of improving heat dissipativity, simplifying the fabrication process and improving the fabrication yield is obtained. This semiconductor laser device comprises a semiconductor layer formed on an emission layer while constituting a convex ridge portion, a current blocking layer consisting of a semiconductor formed to cover at least the side surfaces of the ridge portion, a first metal electrode formed to be in contact with the upper surface of the ridge portion and convex support portions arranged on both sides of the ridge portion at a prescribed interval from the ridge portion.
摘要:
An n-GaAs current blocking layer is formed on a p-AlGaInP first cladding layer, on sides of a ridge portion and in a region on the upper surface of the ridge portion above a window region. Raised portions are formed in a p-GaAs cap layer in regions in the vicinity of facets, while raised regions are formed in the regions of a first electrode in the vicinity of the facets. A second electrode having a thickness larger than the height of the raised regions is formed on the region between the raised regions of the first electrode.
摘要:
A semiconductor laser device includes a semiconductor device layer having an emission layer and formed with a current path on a semiconductor layer in the vicinity of the emission layer, a current blocking layer formed in the vicinity of the current path, and a heat-radiation layer formed to be provided at least in the vicinity of a region formed with a cavity facet of the semiconductor device layer and be located above the current path, and having thermal conductivity larger than that of the current blocking layer.
摘要:
A surface emission semiconductor laser device capable of substantially completely controlling the plane of polarization is obtained. This surface emission semiconductor laser device comprises a first multi-layer reflector, an emission layer formed on the first multi-layer reflector and a second multi-layer reflector formed on the emission layer, and at least either the first multi-layer reflector or the second multi-layer reflector includes a striped part worked in a striped manner in a prescribed period.
摘要:
A semiconductor laser device capable of improving reliability is obtained in a structure formed by mounting a semiconductor laser element on a submount (base) in a junction-down system. This semiconductor laser device comprises a first electrode layer formed on the surface of a semiconductor element including an emission layer to have a shape comprising recess portions and projection portions, a base mounted with the semiconductor element, and a plurality of low melting point metal layers provided between the first electrode layer formed on the surface of the semiconductor element and the base for bonding the first electrode layer formed on the surface of the semiconductor element and the base to each other. Thus, the plurality of low melting point metal layers easily embed clearances resulting from the shape comprising recess portions and projection portions of the surface of the semiconductor element dissimilarly to a case of employing a single low melting point metal layer.