Abstract:
There is provided a light emitting apparatus including: at least one pair of lead frames; a light emitting device electrically connected to the lead frames to emit ultraviolet rays; a body including a side wall surrounding the light emitting device, and a groove portion formed in an upper surface of the side wall to receive an adhesive; and a lens part disposed above the light emitting device and fixed to the upper surface of the side wall of the body by the adhesive.
Abstract:
The present invention relates to a multi-luminous element and a method for manufacturing the same. The present invention provides the multi-luminous element comprising: a buffer layer disposed on a substrate; a first type semiconductor layer disposed on the buffer layer; a first active layer which is disposed on the first type semiconductor layer and is patterned to expose a part of the first type semiconductor layer; a second active layer disposed on the first type semiconductor layer which is exposed by the first active layer; and a second type semiconductor layer disposed on the first active layer and the second active layer, the first and second active layers being repeatedly disposed in the horizontal direction, and the method for manufacturing the same. The multi-luminous element according to the present invention reduces loss of light emitting efficiency and can generate multi-wavelength light by repeatedly disposing the first and second active layers in the horizontal direction.
Abstract:
The non-polar or semi-polar group III nitride layer disclosed in a specific example of the present invention can be used for substrates for various electronic devices, wherein problems of conventional polar group III nitride substrates are mitigated or solved by using the nitride substrate of the invention, and further the nitride substrate can be manufactured by a chemical lift-off process.
Abstract:
A pulse diagnosis device which can detect the pulsation signal of a radial artery using an optical sensor comprising: a sensor module for sensing the pulsation signal by closely adhering thereto a prescribed body part; and a system control portion for operating the sensor module, and processing the optical signal sensed from the sensor module, wherein the sensor module comprises: an optical waveguide-type sensor which is placed on the bottom surface of the sensor module, and lets the optical signal to pass therethrough and detects the change in optical characteristics due to the change in the pressure; a light-source module which is connected on one side surface of the optical waveguide-type sensor, and inputs the optical signal into the optical waveguide-type sensor; and an optical detector module which is connected on one side surface of the optical waveguide-type sensor, and detects the optical signal delivered from the optical waveguide-type sensor.
Abstract:
The present invention relates to light diffusion type light emitting diodes, more particularly, to a light emitting device having a large divergence angle by widely spreading an emitted light from a single color to a white color and a method thereof. The light emitting diode including the encapsulating layer according to the present invention is characterized by including at least two materials with different characteristics. According to the present invention, an encapsulating material for light emitting diode is mixed with at least two materials with a different polarity or a refractive index to easily form a light emitting diode. In addition, the light emitting diode die is bonded on the bottom surface of a cup, and an encapsulating material and microspheres are dispersed in the vicinity and upper portion of the light emitting diode and the entire light emitting diode, therefore the light emitting diode has a large and uniform divergence angle due to a light uniformly scattered and refracted. Furthermore, the microsphere particles with similar density to the encapsulating layer exist, thereby solving a problem of precipitation of particles, which occurs when the existing inorganic particles are dispersed.
Abstract:
The present invention relates to a light emitting diode with high electrostatic discharge and a fabrication method thereof, and more specifically to a light emitting diode comprising a first electrode layer provided over a upper surface of a first semiconductor layer and a upper surface of a second semiconductor layer; a transparent electrode layer formed on the upper surface of the second semiconductor layer, spaced from the first electrode layer; and a second electrode layer provided on a upper surface of the transparent electrode layer. With the present invention, there is provided a light emitting diode element with resistance against electrostatic discharge and with high reliability being strong against electrical impact, by selecting a structure arranging a form of an electrode differently from a conventional electrode.
Abstract:
A fabrication method of an optical module comprises a mixed/hybrid optical alignment method, and an optical module uses the same fabrication method using an optical element chip such as a light source chip or a photodetector chip, etc. on an optical wiring substrate and making it possible to simultaneously secure mass productivity that is the advantage of the passive alignment method according to the related art and alignment accuracy that is the advantage of the active alignment method.
Abstract:
Disclosed is a post-treatment method of a piezoelectric oxide single crystal substrate for suppressing pyroelectric properties of the substrate, and a method for manufacturing a lithium tantalate single crystal substrate using the same. According to one aspect of the present disclosure, there is provided a post-treatment method of a piezoelectric oxide single crystal substrate, the method including: loading at least one reducing agent and the single crystal substrate into a treatment device; and performing reduction treatment by heat treating the substrate while maintaining the inside of the treatment device in a preset environment, wherein the preset environment means that heat treatment is performed at a temperature of 200° C. to 400° C. under normal pressure.
Abstract:
A photovoltaic power generation module may include a ball lens that receives a medium from the outside or outputs a medium to the outside, receives sunlight that proceeds thereto from the outside when a medium is introduced thereto, and focuses the medium on one focal point, a solar cell that is disposed at a point at which sunlight is focused by the ball lens and produces electric energy from the sunlight, a support part supporting the ball lens and the solar cell and that being rotatable in a preset direction, a first motor that moves the solar cell in a direction in which the solar cell becomes distant from or close to the ball lens, a second motor that rotates the solar cell in a direction θ on a spherical coordinate system, and a third motor that rotates the support part in a direction φ on the spherical coordinate system.
Abstract:
Disclosed are a VCSEL diode and a VCSEL diode array having a common anode structure. An aspect of the present disclosure provides the VCSEL diode and the VCSEL diode array, which smoothly perform an operation and improve the quality of output light because the VCSEL diode and the VCSEL diode array have a common anode structure.