摘要:
A digital lithography system including a droplet source (printhead) for selectively ejecting liquid droplets of a phase-change masking material, and an imaging system for capturing (generating) image data representing printed features formed by the ejected liquid droplets. The system also includes a digital control system that detects defects in the printed features, for example, by comparing the image data with stored image data. The digital control system then modifies the printed feature to correct the defect, for example, by moving the printhead over the defect and causing the printhead to eject droplets onto the defect's location. In one embodiment, a single-printhead secondary printer operates in conjunction with a multi-printhead main printer to correct defects.
摘要:
Electrochemical fabrication methods for forming single and multilayer mesoscale and microscale structures are disclosed which include the use of diamond machining (e.g. fly cutting or turning) to planarize layers. Some embodiments focus on systems of sacrificial and structural materials which are useful in Electrochemical fabrication and which can be diamond machined with minimal tool wear (e.g. Ni—P and Cu, Au and Cu, Cu and Sn, Au and Cu, Au and Sn, and Au and Sn—Pb), where the first material or materials are the structural materials and the second is the sacrificial material). Some embodiments focus on methods for reducing tool wear when using diamond machining to planarize structures being electrochemically fabricated using difficult-to-machine materials (e.g. by depositing difficult to machine material selectively and potentially with little excess plating thickness, and/or pre-machining depositions to within a small increment of desired surface level (e.g. using lapping or a rough cutting operation) and then using diamond fly cutting to complete he process, and/or forming structures or portions of structures from thin walled regions of hard-to-machine material as opposed to wide solid regions of structural material.
摘要:
A thin film resistor is formed by employing a plasma etch on a resistor material layer. The resistor material layer can be fabricated employing a nickel chromium (NiCr) alloy, or nickel chromium aluminum (NiCrAl) alloy. A plasma etch is performed in a magnetically enhanced low pressure environment with a chlorine chemistry mixture. The magnetically enhanced low pressure environment and the sufficiently selective chlorine chemistry provide a substantially controlled plasma etch of the resistor material layer to form the thin film resistor. In-situ thickness measurements or an endpoint optical emission system can be employed to determine when to halt the etching process to mitigate damage associated with etching of the layer underlying the thin film resistor.
摘要:
A method and system in which a semiconductor wafer having a plurality of dies is inspected through a visual inspection and/or an electrical test. If certain of the dies on the wafer pass the inspection, then windows are mounted or affixed above those certain dies while they are still a part of the wafer.
摘要:
A method for delicately adjusting an orientation of features in completed micro-machined electromechanical sensor (MEMS) devices after initial formation and installation within the device packaging to trim one or more performance parameters of interest, including modulation, bias and other dynamic behaviors of the MEMS devices.
摘要:
A method for delicately adjusting an orientation of features in completed micro-machined electromechanical sensor (MEMS) devices after initial formation and installation within the device packaging to trim one or more performance parameters of interest, including modulation, bias and other dynamic behaviors of the MEMS devices.
摘要:
A method of determining the time to release of a movable feature in a multilayer substrate of silicon-containing materials including alternate layers of polysilicon and silicon oxide wherein a mass monitoring device determines the mass of a released feature, and the substrate is etched with anhydrous hydrogen fluoride until the substrate mass is equivalent to that of the released movable feature when the etch time is noted. A suitable mass monitoring device is a quartz crystal microbalance.
摘要:
Disclosed herein is a method of detecting an end point of plasma process performed on an object, and a plasma process apparatus. The method includes the steps of detecting an emission spectrum over a wavelength region specific to C.sub.2 in the plasma, by optical detecting means, and determining the end point of the plasma process from the emission intensity of the emission spectrum detected by the optical detector. The apparatus has a process chamber, a pair of electrodes, a light-collecting device, an optical detector, and a determining device. The chamber has a monitor window. The electrodes are located in the process chamber. The first electrode is used to support the object. A high-frequency power is supplied between the electrodes to change a process gas into plasma. The light-collecting device collects the light from the plasma through the monitor window. The optical detector detects an emission spectrum from the light collected. The determining device determines the end point of the plasma process from the emission intensity of the emission spectrum detected. The monitor window is secured to the distal end of a cylindrical member protruding from the chamber. The member has a narrow gas passage for trapping a gas generated by the plasma process.
摘要:
Micro-electro-mechanical structure (MEMS) capacitor devices, capacitor trimming for MEMS capacitor devices, and design structures are disclosed. The method includes identifying a process variation related to a formation of micro-electro-mechanical structure (MEMS) capacitor devices across a substrate. The method further includes providing design offsets or process offsets in electrode areas of the MEMS capacitor devices across the substrate, based on the identified process variation.
摘要:
A method of etching the whole width of a substrate to expose buried features is disclosed. The method includes etching a face of a substrate across its width to achieve substantially uniform removal of material; illuminating the etched face during the etch process; applying edge detection techniques to light reflected or scattered from the face to detect the appearances of buried features; and modifying the etch in response to the detection of the buried feature. An etching apparatus for etching substrate across its width to expose buried is also disclosed.