Abstract:
An electron beam physical vapor deposition (EBPVD) apparatus and a method for using the apparatus to produce a coating material (e.g., a ceramic thermal barrier coating) on an article. The EBPVD apparatus generally includes a coating chamber that is operable at elevated temperatures and subatmospheric pressures. An electron beam gun projects an electron beam into the coating chamber and onto a coating material within the chamber, causing the coating material to melt and evaporate. An article is supported within the coating chamber so that vapors of the coating material deposit on the article. The operation of the EBPVD apparatus is enhanced by the inclusion or adaptation of one or more mechanical and/or process modifications, including those necessary or beneficial when operating the apparatus at coating pressures above 0.010 mbar.
Abstract:
Disclosed is an electron beam evaporator for installation in a vacuum apparatus which provides for variable positioning during or between applications of a coating. The apparatus has a carrier plate which is a flat hollow body, the top cover plate of which supports the evaporator. The hollow body is disposed over the bore in the tank such that it can be turned about the main axis of the bore. The component assemblies of the electron beam evaporator are vacuum-tight on the cover plate and the connecting lines are carried through the interior of the hollow body to the component assemblies.
Abstract:
Bicyclic and tricyclic pyrrolidine derivatives are disclosed that are useful as antagonists of the GnRH receptor. Methods for using the novel compounds to treat GnRH-related disorders are also provided, as are pharmaceutical compositions and novel synthetic methods.
Abstract:
An apparatus and method for depositing a carbon layer includes an arc discharge is formed between an electron source and an evaporation material by means of a first power supply device. The negative terminal of the first power supply device is connected in an electrically conducting manner to the electron source and the positive terminal of the first power supply device is connected in an electrically conducting manner to the evaporation material. A permanent magnet system and a solenoid coil are arranged in a rotationally symmetrical manner around the evaporation material. The evaporation material is formed as a graphite rod which is surrounded by at least one heat-insulating element at least on the rod end to be evaporated of the graphite rod.
Abstract:
In order to evaporate material, an electronic beam is guided over a melt surface in a periodic pattern by a detecting unit. Whether or not the actual pattern matches the target pattern specified by the deflecting unit is detected in principle on an image of the melt surface. In order to allow a better analysis of the image, the periodicity of the deflection pattern during the analysis of temporally successive images is taken into consideration.
Abstract:
A pulsed plasma deposition device, including an apparatus for generating a beam of electrons, a target and a substrate, the apparatus being suitable for generating a pulsed beam of electrons directed towards said target to determine the ablation of the material of said target in the form of a plasma plume directed towards said substrate. The device includes a transportation and focussing group of the beam of electrons towards said target, arranged between said apparatus and said target and including a transportation cone, the transportation and focussing group also including a focussing electrode directly connected to the transportation cone and shaped substantially like a loop. The axis of symmetry of the focussing electrode is perpendicular, or substantially perpendicular, to the surface of the target.
Abstract:
Device for producing an electron beam includes a housing, which delimits a space that is evacuatable and has an electron beam outlet opening; an inlet structured and arranged for feeding process gas into the space; and a planar cathode and an anode, which are arranged in the space, and between which, a glow discharge plasma is producible by an applied electrical voltage. Ions are accelerateable from the glow discharge plasma onto a surface of the cathode and electrons emitted by the cathode are accelerateable into the glow discharge plasma. The cathode includes a first part made of a first material at least on an emission side, which forms a centrally arranged first surface region of the cathode, and a second part made of a second material, which forms a second surface region of the cathode that encloses the first surface region.
Abstract:
An electron gun includes the following: a primary thermionic electron source, a secondary thermionic electron source and a focusing electrode disposed within a first housing that includes one or more reference members adjustably attached to a housing support connected to a first platform; an anode and one or more focusing coils disposed within a second housing comprising one or more insulating members adjustably connected to the first platform; and one or more deflection coils disposed within a third housing connected to the second housing and located opposite said first housing.
Abstract:
A method for fabricating metal nanodots on a substrate is provided. The method includes: preparing a nanoporous polysulfone membrane; applying the nanoporous polysulfone membrane onto a substrate; depositing a metal into the pores of the polysulfone membrane thereby forming metal nanodots on the substrate; and removing the nanoporous polysulfone membrane.
Abstract:
An electron gun evaporation apparatus capable of efficiently using an evaporation source includes an electron beam position controller which determines, as an applicable range, a range within which the distribution of the film thickness growth rate is almost constant in each scanning direction of an electron beam to be applied to an evaporation source in a crucible for the irradiation position of the electron beam, on the basis of information pertaining to the electron beam irradiation position and the film thickness growth rate in the electron beam irradiation position.