Abstract:
Hybrid semiconductor materials have an inorganic semiconductor incorporated into a hole-conductive fluorene copolymer film. Nanometer-sized particles of the inorganic semiconductor may be prepared by mixing inorganic semiconductor precursors with a steric-hindering coordinating solvent and heating the mixture with microwaves to a temperature below the boiling point of the solvent.
Abstract:
A metal chalcogenide composite nano-particle comprising a metal capable of forming p-type semiconducting chalcogenide nano-particles and a metal capable of forming n-type semiconducting chalcogenide nano-particles, wherein at least one of the metal chalcogenides has a band-gap between 1.0 and 2.9 eV and the concentration of the metal capable of forming p-type semiconducting chalcogenide nano-particles is at least 5 atomic percent of the metal and is less than 50 atomic percent of the metal; a dispersion thereof; a layer comprising the nano-particles; and a photovoltaic device comprising the layer.
Abstract:
Methods of processing nanocrystals to remove excess free and bound organic material and particularly surfactants used during the synthesis process, and resulting nanocrystal compositions, devices and systems that are physically, electrically and chemically integratable into an end application.
Abstract:
A method for producing highly monodisperse nanocrystals comprising the steps of: a) preparing a precursor comprising a metal ion and a coordinating ligand; b) dissolving the precursor in a solvent mixture comprising coordinating solvent and optionally non-coordinating solvent; c) raising the temperature of the step b mixture into the range from 150° C. to 350° C.; d) adding a chalcogen to the step c heated mixture whereby the chalcogen reacts with the precursor; e) lowering the temperature of the step d mixture to stop the reaction; and e) maintaining the step e cooled mixture for sufficient time at sufficient temperature to narrow the size distribution of the nanocrystals. The methods greatly reduce or eliminate the need for trioctylphosphine oxide (TOPO); provide control over particle size, and permits facile production of high quality nanocrystals with very small diameters (
Abstract:
A method for preparing cadmium sulfide nanocrystals emitting light at multiple wavelengths. The method comprises the steps of (a) mixing a cadmium precursor and a dispersant in a solvent that weakly coordinates to the cadmium precursor, and heating the mixture to obtain a cadmium precursor solution, (b) dissolving a sulfur precursor in a solvent that weakly coordinates to the sulfur precursor to obtain a sulfur precursor solution, and (c) feeding the sulfur precursor solution to the heated cadmium precursor solution maintained at a high temperature to prepare cadmium sulfide crystals, and growing the cadmium sulfide crystals. Further, cadmium sulfide nanocrystals prepared by the method. The cadmium sulfide nanocrystals have uniform size and shape and can emit light close to white light simultaneously at different wavelengths upon excitation. Due to these characteristics, the cadmium sulfide nanocrystals can be applied to white light-emitting diode devices.
Abstract:
The present invention discloses methods for making micron/nano sized (2 nm to 5 μm) particles of various inorganic materials such as mineral/oxides/sulphides/metals/ceramics using aqueous foam, Aqueous foams of various anionic, cationic, non-ionic surfactant, casein proteins and their mixtures has been used for the preparation of suitable inorganic materials growth. Large scale synthesis of advanced inorganic materials such as various ceramics, minerals, oxides, sulphides and metal micron/nanoparticles of controlled shape and size can be obtained by mixing appropriate metal ions with the suitable cationic/anionic/non-ionic/casein protein/their mixtures, which is bubbled by air to form aqueous foams and thereafter their reduction/reaction to form the final product.
Abstract:
A core-shell structure comprises a core (2) comprising nanoparticles and a shell (4) coating the core (2), and its void space (3) formed by the core (2) and the shell (4) is controlled. A method of preparing the core-shell structure comprises: forming particles comprising a photoetchable semiconductor, metal or polymer and coating the particles with a shell (4) comprising a non-photoetchable semiconductor, metal or polymer, to form a core-shell structure (5); and irradiating the core-shell structure with a light having a controlled wavelength in the photoetching solution to form an adjustable void space inside a shell (3) within the core-shell structure by the size-selective photoetching method. The core-shell structure allows the preparation of a catalyst exhibiting an extremely high efficiency, and can be used as a precursor for preparing a nanomaterial required for a nanodevice.
Abstract:
A method for producing composite fine particles, which comprises one or more growth steps of growing, on surfaces of fine particles of a first Group II-VI compound, layers of a second Group II-VI compound having a bandgap different from that of the first Group II-VI compound and/or having an impurity or impurity concentration different from that of the first Group II-VI compound. This method enables production of composite fine particles of Group II-IV compounds having favorable performances in a simple manner.
Abstract:
Dendron ligands or other branched ligands with cross-linkable groups were coordinated to colloidal inorganic nanoparticles, including nanocrystals, and substantially globally cross-linked through different strategies, such as ring-closing metathesis (RCM), dendrimer-bridging methods, and the like. This global cross-linking reaction sealed each nanocrystal within a dendron box to yield box-nanocrystals which showed dramatically enhanced stability against chemical, photochemical and thermal treatments in comparison to the non-cross-linked dendron-nanocrystals. Empty dendron boxes possessing a very narrow size distribution were formed by the dissolution of the inorganic nanocrystals contained therein upon acid or other etching treatments.
Abstract:
A mixed melt, which contains urea and/or a urea derivative and contains a sulfur source and a zinc source, is prepared. A temperature of the mixed melt is raised, and a precipitate of zinc sulfide is thereby formed. The temperature of the mixed melt is raised even further, and a solid material containing the zinc sulfide is thereby formed. The solid material is fired, and organic constituents contained in the solid material are thus removed. Zinc sulfide particles having uniform particle size and free from inclusion of impurities are thus produced without any precipitant being added.