Metal chalcogenide composite nano-particles and layers therewith
    42.
    发明授权
    Metal chalcogenide composite nano-particles and layers therewith 失效
    金属硫属元素复合纳米颗粒及其层

    公开(公告)号:US07468146B2

    公开(公告)日:2008-12-23

    申请号:US10659926

    申请日:2003-09-11

    Abstract: A metal chalcogenide composite nano-particle comprising a metal capable of forming p-type semiconducting chalcogenide nano-particles and a metal capable of forming n-type semiconducting chalcogenide nano-particles, wherein at least one of the metal chalcogenides has a band-gap between 1.0 and 2.9 eV and the concentration of the metal capable of forming p-type semiconducting chalcogenide nano-particles is at least 5 atomic percent of the metal and is less than 50 atomic percent of the metal; a dispersion thereof; a layer comprising the nano-particles; and a photovoltaic device comprising the layer.

    Abstract translation: 一种含能够形成p型半导体硫族化物纳米颗粒的金属和能够形成n型半导体硫族化物纳米颗粒的金属的金属硫族化物复合纳米颗粒,其中至少一种金属硫属元素化合物具有在 1.0和2.9eV,能够形成p型半导体硫族化物纳米颗粒的金属的浓度至少为金属的5原子%,小于金属的50原子%; 其分散体; 包含纳米颗粒的层; 以及包括该层的光伏器件。

    Method for Producing Highly Monodisperse Quantum Dots
    44.
    发明申请
    Method for Producing Highly Monodisperse Quantum Dots 审中-公开
    生产高度单分散量子点的方法

    公开(公告)号:US20080044340A1

    公开(公告)日:2008-02-21

    申请号:US11628966

    申请日:2005-06-10

    Abstract: A method for producing highly monodisperse nanocrystals comprising the steps of: a) preparing a precursor comprising a metal ion and a coordinating ligand; b) dissolving the precursor in a solvent mixture comprising coordinating solvent and optionally non-coordinating solvent; c) raising the temperature of the step b mixture into the range from 150° C. to 350° C.; d) adding a chalcogen to the step c heated mixture whereby the chalcogen reacts with the precursor; e) lowering the temperature of the step d mixture to stop the reaction; and e) maintaining the step e cooled mixture for sufficient time at sufficient temperature to narrow the size distribution of the nanocrystals. The methods greatly reduce or eliminate the need for trioctylphosphine oxide (TOPO); provide control over particle size, and permits facile production of high quality nanocrystals with very small diameters (

    Abstract translation: 一种制备高度单分散纳米晶体的方法,包括以下步骤:a)制备包含金属离子和配位配体的前体; b)将前体溶解在包含配位溶剂和任选的非配位溶剂的溶剂混合物中; c)将步骤b混合物的温度升高到150℃至350℃的范围内。 d)向步骤c加热的混合物中加入硫族元素,由此硫属原子与前体反应; e)降低步骤d混合物的温度以停止反应; 和e)将步骤e冷却的混合物在足够的温度下保持足够的时间以使纳米晶体的尺寸分布变窄。 该方法大大减少或消除了对三辛基氧化膦(TOPO)的需要; 提供对粒度的控制,并允许容易地生产具有非常小直径(<4nm)的高质量纳米晶体。 通过这些方法制备的CdSe纳米晶体如图所示。

    Method of preparing cadmium sulfide nanocrystals emitting light at multiple wavelengths, and cadmium sulfide nanocrystals prepared by the method
    45.
    发明申请
    Method of preparing cadmium sulfide nanocrystals emitting light at multiple wavelengths, and cadmium sulfide nanocrystals prepared by the method 有权
    制备发射多波长光的硫化镉纳米晶体的方法和通过该方法制备的硫化镉纳米晶体

    公开(公告)号:US20060062720A1

    公开(公告)日:2006-03-23

    申请号:US11002490

    申请日:2004-12-03

    Abstract: A method for preparing cadmium sulfide nanocrystals emitting light at multiple wavelengths. The method comprises the steps of (a) mixing a cadmium precursor and a dispersant in a solvent that weakly coordinates to the cadmium precursor, and heating the mixture to obtain a cadmium precursor solution, (b) dissolving a sulfur precursor in a solvent that weakly coordinates to the sulfur precursor to obtain a sulfur precursor solution, and (c) feeding the sulfur precursor solution to the heated cadmium precursor solution maintained at a high temperature to prepare cadmium sulfide crystals, and growing the cadmium sulfide crystals. Further, cadmium sulfide nanocrystals prepared by the method. The cadmium sulfide nanocrystals have uniform size and shape and can emit light close to white light simultaneously at different wavelengths upon excitation. Due to these characteristics, the cadmium sulfide nanocrystals can be applied to white light-emitting diode devices.

    Abstract translation: 一种制备发射多波长光的硫化镉纳米晶体的方法。 该方法包括以下步骤:(a)将镉前体与分散剂混合在与镉前体轻配位的溶剂中,加热混合物得到镉前体溶液,(b)将硫前体溶于弱溶剂中 与硫前体配位以获得硫前体溶液,和(c)将硫前体溶液供给到保持在高温下的加热镉前体溶液以制备硫化镉晶体,并生长硫化镉晶体。 此外,通过该方法制备的硫化镉纳米晶体。 硫化镉纳米晶体具有均匀的尺寸和形状,并且可以在激发时以不同的波长同时发射接近白光的光。 由于这些特性,硫化镉纳米晶体可以应用于白色发光二极管器件。

    Process for preparing micron/nano size inorganic particles
    46.
    发明申请
    Process for preparing micron/nano size inorganic particles 审中-公开
    制备微米/纳米级无机颗粒的方法

    公开(公告)号:US20050218540A1

    公开(公告)日:2005-10-06

    申请号:US10814856

    申请日:2004-03-31

    Abstract: The present invention discloses methods for making micron/nano sized (2 nm to 5 μm) particles of various inorganic materials such as mineral/oxides/sulphides/metals/ceramics using aqueous foam, Aqueous foams of various anionic, cationic, non-ionic surfactant, casein proteins and their mixtures has been used for the preparation of suitable inorganic materials growth. Large scale synthesis of advanced inorganic materials such as various ceramics, minerals, oxides, sulphides and metal micron/nanoparticles of controlled shape and size can be obtained by mixing appropriate metal ions with the suitable cationic/anionic/non-ionic/casein protein/their mixtures, which is bubbled by air to form aqueous foams and thereafter their reduction/reaction to form the final product.

    Abstract translation: 本发明公开了使用水性泡沫制造各种无机材料如矿物/氧化物/硫化物/金属/陶瓷的微米/纳米尺寸(2nm至5μm)的颗粒的方法,各种阴离子,阳离子,非离子表面活性剂的水性泡沫 ,酪蛋白及其混合物已被用于制备合适的无机材料生长。 可以通过将适当的金属离子与合适的阳离子/阴离子/非离子/酪蛋白蛋白/它们的混合物获得大规模合成先进的无机材料,例如各种陶瓷,矿物质,氧化物,硫化物和受控形状和尺寸的金属微米/纳米颗粒 混合物,其通过空气鼓泡以形成水性泡沫,然后进行还原/反应以形成最终产物。

    Composite fine particles and method for producing the same
    48.
    发明授权
    Composite fine particles and method for producing the same 失效
    复合微粒及其制造方法

    公开(公告)号:US06881481B2

    公开(公告)日:2005-04-19

    申请号:US10232745

    申请日:2002-09-03

    Abstract: A method for producing composite fine particles, which comprises one or more growth steps of growing, on surfaces of fine particles of a first Group II-VI compound, layers of a second Group II-VI compound having a bandgap different from that of the first Group II-VI compound and/or having an impurity or impurity concentration different from that of the first Group II-VI compound. This method enables production of composite fine particles of Group II-IV compounds having favorable performances in a simple manner.

    Abstract translation: 一种生产复合微粒的方法,其包括在第一组II-VI化合物的细颗粒的表面上生长的一个或多个生长步骤,具有与第一组II-VI化合物的带隙不同的第二组II-VI化合物的层 II-VI族化合物和/或具有与第一种II-VI族化合物不同的杂质浓度。 该方法能够以简单的方式制备具有良好性能的II-IV族化合物的复合微粒。

    Process for producing zinc sulfide particles
    50.
    发明申请
    Process for producing zinc sulfide particles 失效
    硫化锌颗粒生产方法

    公开(公告)号:US20050002853A1

    公开(公告)日:2005-01-06

    申请号:US10902208

    申请日:2004-07-30

    Abstract: A mixed melt, which contains urea and/or a urea derivative and contains a sulfur source and a zinc source, is prepared. A temperature of the mixed melt is raised, and a precipitate of zinc sulfide is thereby formed. The temperature of the mixed melt is raised even further, and a solid material containing the zinc sulfide is thereby formed. The solid material is fired, and organic constituents contained in the solid material are thus removed. Zinc sulfide particles having uniform particle size and free from inclusion of impurities are thus produced without any precipitant being added.

    Abstract translation: 制备含有尿素和/或尿素衍生物并含有硫源和锌源的混合熔体。 混合熔体的温度升高,从而形成硫化锌的沉淀。 混合熔体的温度进一步升高,由此形成含有硫化锌的固体材料。 固体材料被烧制,并且固体材料中包含的有机成分被除去。 因此,在没有添加任何沉淀剂的情况下,生产粒径均匀且不含杂质的硫化锌颗粒。

Patent Agency Ranking