Abstract:
Nanoporous carbon-based scaffolds or structures, and specifically carbon aerogels and their manufacture and use thereof. Embodiments include a sulfur-doped cathode material within a lithium-sulfur battery, where the cathode is collector-less and is formed of a binder-free, monolithic, polyimide-derived carbon aerogel. The carbon aerogel includes pores that surround elemental sulfur and accommodate expansion of the sulfur during conversion to lithium sulfide. The cathode and underlying carbon aerogel provide optimal properties for use within the lithium-sulfur battery.
Abstract:
Methods and materials are described for preparing organic-inorganic hybrid gel compositions where a sulfur-containing cross-linking agent covalently links the organic and inorganic components. The gel compositions are further dried to provide porous gel compositions and aerogels. The mechanical and thermal properties of the dried gel compositions are also disclosed.
Abstract:
The present disclosure provides an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which also has favorable combustion and self-heating properties. Also provided is a method of preparing an aerogel composition which is durable and easy to handle, which has favorable performance in aqueous environments, and which has favorable combustion and self-heating properties. Further provided is a method of improving the hydrophobicity, the liquid water uptake, the heat of combustion, or the onset of thermal decomposition temperature of an aerogel composition.
Abstract:
The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.
Abstract:
The present invention provides articles and methods related to insulation panels made from aerogels, and specifically polyimide based aerogels. Such insulation panels have a wide variety of applications, including specifically in aerospace applications.
Abstract:
Microporous polyolefin and microporous polydicyclopentadiene (polyDCPD) based aerogels and methods for preparing and using the same are provided. The aerogels are produced by forming a polymer gel structure within a solvent from a olefin or dicyclopentadiene monomer via Ring Opening Metathesis Polymerization (ROMP) reactions, followed by supercritical drying to remove the solvent from the aerogel. Other aerogels are prepared by sequentially (1) mixing at least one dicyclopentadiene monomer, at least one solvent at least one catalyst and at least one inorganic and/or organic reinforcing material, (2) gelling the mixture, (3) aging, and (4) supercritical drying. Aerogels provided herein are inexpensive to prepare, possess desirable thermal, mechanical, acoustic, chemical, and physical properties and are hydrophobic. The aerogels provided herein are suitable for use in various applications, including but not limited to thermal and acoustic insulation, radiation shielding, and vibrational damping applications.
Abstract:
The present disclosure can provide an aerogel composite. The aerogel composite comprises at least one base layer having a top surface and a bottom surface, the base layer comprising a reinforced aerogel composition which comprises a reinforcement material and a monolithic aerogel framework, a first facing layer comprising a first facing material attached to the top surface of the base layer, and a second facing layer comprising a second facing material attached to the bottom surface of the base layer. At least a portion of the monolithic aerogel framework of the base layer extends into at least a portion of both the first facing layer and the second facing layer. The first facing material and the second facing material can each comprise or consist essentially of elastic fibers such as spandex, nylon, lycra, elastane, or combinations thereof.
Abstract:
Described herein are insulating structures that include at least one microporous layer including a plurality of pores, a porous layer adjacent to the microporous layer, and a monolithic aerogel structure extending through the plurality of pores of the microporous layer and through at least part of the porous layer. The microporous layer filters aerogel dust from cracked or damaged aerogel within the scaffold, slowing or preventing loss of dust from the insulating structures.
Abstract:
The invention relates to a tank container (100; 100′) for the transport and storage of cryogenic liquefied gas, comprising a framework (120) and a cylindrical vessel (110) connected to the framework (120), wherein the vessel (110) is covered by a superinsulation arrangement (130) based on an aerogel composition, and the vessel (110) is connected to the framework (120) by a clamping device (30) which is adapted to allow for a relative movement between the framework (120) and the vessel (110) due to thermal expansion or contraction of the vessel (110).
Abstract:
The present invention relates to a thermal insulation board (IB) comprising at least two insulating layers (A) bonded together. At least one of the at least two insulating layers (A) comprises at least one aerogel composite material, wherein the aerogel composite material comprises at least one silica aerogel (a1), at least one polymer foam (a2) and at least one flame retardant (a3). The present invention also relates to a thermal insulation system (IS) comprising the thermal insulation board (IB). Further, it relates to a process for the production of the thermal insulation board (IB) and to the use of the thermal insulation board (IB) and of the thermal insulation system (IS) for the thermal insulation of buildings, parts and/or elements of buildings.